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SUMMARY
Pancreatic cancer is a rare but fatal form of cancer, the fourth highest in absolute mortality. Known risk fac-
tors include obesity, diet, and type 2 diabetes; however, the low incidence rate and interconnection of these
factors confound the isolation of individual effects. Here, we use epidemiological analysis of prospective hu-
man cohorts and parallel tracking of pancreatic cancer in mice to dissect the effects of obesity, diet, and dia-
betes on pancreatic cancer. Through longitudinal monitoring and multi-omics analysis in mice, we found
distinct effects of protein, sugar, and fat dietary components, with dietary sugars increasingMad2l1 expres-
sion and tumor proliferation. Using epidemiological approaches in humans, we find that dietary sugars give a
MAD2L1 genotype-dependent increased susceptibility to pancreatic cancer. The translation of these results
to a clinical setting could aid in the identification of the at-risk population for screening and potentially
harness dietary modification as a therapeutic measure.
INTRODUCTION

Pancreatic cancer is a relatively rare form of cancer, with a life-

time risk of developing pancreatic cancer of 1 in 76. Due to the

high fatality rate, however, it is the fourth highest in absolute

numbers of fatalities (Siegel et al., 2016). One of the major rea-

sons for the high mortality is the late detection of pancreatic

cancer and poor therapeutic options. This gives a median sur-

vival of <6 months and a 5-year survival rate of <8% (Cleary

et al., 2004). The known risk factors for pancreatic cancer

include age, smoking, obesity, lack of physical activity, diet,

type 2 diabetes (T2D), chronic pancreatitis, cirrhosis, and ge-
This is an open access article under the CC BY-N
netic background (Bardeesy and DePinho, 2002; Whitcomb

et al., 2015).

A better understanding is required of the contribution of ge-

netic and environmental factors to pancreatic cancer develop-

ment (Bardeesy and DePinho, 2002). It is unfortunate that epide-

miological studies on dissecting pancreatic cancer have faced

difficulty in dissecting overlapping risks, a difficulty that is com-

pounded by the relative rareness of the disease. In the link be-

tween obesity and pancreatic cancer (Aune et al., 2012), an indi-

vidual who is obese is likely to have variability in diet, exercise

regime, and genetic background, making it difficult to attribute

specific risks to obesity compared to dietary changes, such as
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the association between the consumption of sugar-sweetened

food and pancreatic cancer risk (Larsson et al., 2006). Even

with the strong association observed between diabetes and

pancreatic cancer, causality remains problematic. If T2D were

directly driving pancreatic cancer risk, it would be expected

that the increased duration of diabetes diagnosis would be asso-

ciated with the ever-increasing risk of pancreatic cancer. By

contrast, the epidemiological data indicate that the highest risk

of pancreatic cancer is observed soon after T2D diagnosis,

with the risk decreasing over time (Bosetti et al., 2014), a kinetic

that suggests that at least part of the risk is driven by undiag-

nosed pancreatic cancer causing T2D. In addition to this, the

known association of T2Dwith obesity and altered diet increases

the potential for confounding associations (Gumbs, 2008; Hart

et al., 2008). To the extent possible, these confounding factors

are controlled for; however, there is a limit to the accuracy that

can be achieved in monitoring food intake. These limitations

are of particular importance in case-control studies of pancreatic

cancer, in which the long latency period and strong impact on

appetite can reverse causality (Sanchez et al., 2012).

The epidemiological associations of pancreatic cancer with

diet, obesity, and T2D are extremely complex to unravel. It is

therefore difficult, using human studies alone to determine

whether diet, obesity, and T2D independently contribute to the

risk of pancreatic cancer development or whether some or all

of these associations are actually indirect, with the correlation

being driven by the entanglement of these factors. By contrast,

mouse models readily allow these effects to be untangled. For

example, the db/db and ob/obmouse strains disentangle the ef-

fect of diet. The db/dbmouse strain possesses a mutation in the

leptin receptor (Leprdb/db) that drives the development of severe

obesity and T2D (Chen et al., 1996). The ob/ob mouse strain is

similar, with a mutation in leptin (Lepob/ob) that results in severe

obesity, but the strain rarely develops diabetes (Zhang et al.,

1994). Critically, and unlike other models of murine diabetes

and obesity, the db/db and ob/ob phenotypes develop while

the mice are on normal healthy diets, such that the effects

observed can be assigned to quantitative (calorie intake and

obesity) rather than qualitative (nutritional composition of the

diet) changes to induce obesity. Another advantage of mouse

models is the ability to use transgenes to promote the early onset

of pancreatic cancer, such as Ela1-TAg mice, which express the

SV40 large T antigen under the control of the Elastase-1 acinar

cell promoter. These mice develop spontaneous early-onset

pancreatic acinar carcinoma (Ornitz et al., 1987; Tevethia et al.,

1997), the kinetics of which allow dietary modulation without first

inducing obesity or T2D. Here, we used both human epidemio-

logical studies and mouse model studies in parallel to dissect

the interplay of diet, obesity, and T2D in pancreatic cancer.

RESULTS

Obesity Drives Murine Pancreatic Cancer Development,
Growth, and Lethality, Independent of Diet Composition
Susceptibility to pancreatic cancer in humans is associated with

diet, obesity, and T2D, creating a complex web of interconnec-

tions that are difficult to dissect using epidemiological data. To

disentangle the effect of obesity and T2D from diet, we inter-
2 Cell Reports 32, 107880, July 14, 2020
crossed the db/db and ob/ob mouse strains with the well-char-

acterized TAg transgenic model of pancreatic acinar carcinoma.

These strains reflect a genetic form of human obesity, which,

while rare, allows the decoupling of qualitative and quantitative

dietary changes. Despite being fed a low-sugar diet, both TAg+

db/db and TAg+ ob/ob mice developed severe and early onset

obesity (Figures S1A–S1F); however, only the TAg+ db/db mice

also developed diabetes (Figures S1G–S1L). From 7 weeks of

age onward, TAg+, TAg+ db/db, and TAg+ ob/ob mice were

scanned by magnetic resonance imaging (MRI) for the presence

and size of pancreatic tumors (Figures S1M–S1Z). The cumula-

tive incidence of pancreatic tumors in these mice demonstrated

that both the db/db and ob/ob genotypes significantly hastened

tumor onset (Figures 1A and 1B), resulting in tumor development

5 weeks earlier than that observed in non-obese TAg+ mice (Fig-

ure 1C). Both the db/db and ob/ob genotypes trended toward an

increased tumor growth rate (Figure 1D). For both female and

male mice, obesity resulted in elevated mortality due to pancre-

atic cancer, with a high level of death observed at 14 weeks in

both db/db and ob/ob strains, while substantial mortality was

delayed out past 21 weeks in the non-obese TAg+ mice (Figures

1E and 1F). Even after normalizing for the earlier development,

db/db and ob/ob mice still showed significantly higher levels of

tumor-associated mortality (Figures 1G and 1H). Overall, these

results validate obesity or total calorie intake as a driver of

pancreatic acinar carcinoma, independent of diet composition,

with significant effects on tumor development. By contrast, in

this model, there was no additional effect of T2D, with no signif-

icant differences between the obese and diabetic db/db mice

and the obese non-diabetic ob/ob strain.

Opposing Effects of Dietary Protein and Fat on Murine
Pancreatic Cancer
Having established obesity or total calorie intake as an indepen-

dent driver of pancreatic acinar carcinoma, we sought to test the

independent impact of dietary components. We investigated the

effect of dietary protein by placing breeder cages on either con-

trol or high-protein diets and continuing the dietary manipulation

after weaning, in effect manipulating dietary exposure from the in

utero stage onward. TAg+mice, on either the control or high-pro-

tein diet, were then assessed by MRI every 2 weeks for the pres-

ence and size of pancreatic tumors (Figure S2). We assessed the

effect of altered dietary protein on pancreatic cancer develop-

ment (Figures 2A and 2B). Female mice raised on a high-protein

diet exhibited a 2-week delay in pancreatic cancer onset (Figures

2A and 2C). No significant effect was observed inmalemice (Fig-

ure 2B); this was due to the statistical limitations of pairwise di-

etary effects rather than sex-specific dietary effects, as a nutri-

tional landscape analysis demonstrated similar effects of

dietary protein on male and female mice (see below). Overall,

no significant effect was seen on the tumor growth rate (Fig-

ure 2D) at the macroscopic level; however, a substantial drop

in tumor proliferation was observed in both sexes through histol-

ogy (Figures 2E and 2F). Using RNA sequencing (RNA-seq), we

profiled the transcriptome of size-matched tumors from high-

protein and control diets. Pathway analysis (Figure 2G) identified

a strong downregulation of cell-cycle-associated genes (Figures

2H and S3A) and ribosome components (Figures 2I and S3B). At



Figure 1. Quantitative Changes in Calorie Intake Drive Pancreatic Cancer Onset and Growth

TAg+, TAg+ Leprdb/db, and TAg+ Lepob/ob mice were assessed through MRI for tumor size.

(A and B) Cumulative incidence of pancreatic cancer in TAg+ mice, and TAg+ mice crossed to the db/db and the ob/ob backgrounds: (A) female (n = 31 TAg+, 8

TAg+ Leprdb/db, 6 TAg+ Lepob/ob) and (B) male (n = 24 TAg+, 14 TAg+ Leprdb/db, 8 TAg+ Lepob/ob) mice. p values via the log-rank test.

(C) Age at tumor onset. p values via Kruskal-Wallis test with Dunn’s post hoc test.

(D) Tumor volume increase every 2 weeks. p values via Kruskal-Wallis test with Dunn’s post hoc test.

(E and F) Overall pancreatic cancer survival in female (E) and male (F) mice.

(G and H) Survival normalized to first detection of pancreatic cancer in female (G) and male (H) mice. p values via log-rank test.
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the molecular level, the high-protein diet is therefore associated

with a stalling of the cell cycle and a reduction in biomass synthe-

sis capacity, explaining the macro-level phenotype observed.

Tumor-induced mortality was unchanged (Figures S4C and

S4D), although the duration of observation was not sensitized

for detecting decreased mortality. These results indicate tu-

mor-suppressant effects of the high-protein diet on pancreatic

acinar carcinoma.While this result could be interpreted as a sup-

pressive effect of dietary protein, shifts in the alternative macro-

molecule composition and total calorie intake (13% reduced in

the high-protein diet mice compared to the control diet mice)

may also contribute to the effect observed.

Using the same system of dietary change from the in utero

stage onward, we investigated the effect of increased dietary

fat. TAg+ mice were exposed to either 10% or 30% dietary fat

and compared to the control diet through longitudinal MRI

assessment. Through cumulative pancreatic cancer incidence,

there was no effect of increased dietary fat on female mice (Fig-

ure 3A) and only a minor acceleration of incidence in male mice

fed 30% fat (Figures 3B and 3C). Analysis of the effect of dietary

fat on pancreatic cancer growth rates indicated no systematic

effect (Figure 3D). At a histological level, no changes were

observed in tumor morphology, cellular density, or proliferation

(Figures 3E–3G). Despite the lack of any substantial effects on

the tumor itself, a high-fat diet had a profound effect on the mor-

tality rate of tumor-bearing male (Figure 3H) but not female (Fig-

ure 3I) mice. Male TAg+ mice fed either the 10% or the 30% fat
died on average 7 weeks earlier than control-fed mice, despite

similar tumor burdens. Notably, these effects were observed

before any major changes in body weight (Figure S4), indicating

that the diet, rather than obesity, was the causative factor. This

toxicity effect could not be explained at the molecular level,

with few coordinated transcriptional or metabolic changes in tu-

mors from mice fed 30% fat compared to the control diet re-

vealed by RNA-seq analysis (Figure 3J). These results suggest

that while dietary fat has little or mild direct pro-oncogenic prop-

erties, the high-fat diets have a major effect on tumor-induced

mortality in male mice. While this effect could be a direct result

of the dietary fat, high-fat diets also had elevated dietary sugars

and increased energy density, suggestive of alternative sources

of the effect.

Elevated Dietary Glucose Increases Tumor-Induced
Mortality in Mice
As dietary sugars have been linked to obesity and T2D, risk fac-

tors for pancreatic cancer, we tested the effect of simple dietary

sugars on tumor kinetics. We compared tumor growth in mice

fed the control diet versus either a sugar-free or a high-glucose

diet (Figure S2). Analysis of cumulative incidence of pancreatic

cancer found no significant effect of high-glucose relative to

the (sugar-containing) control diet; however, there was a signifi-

cant delay in tumor development of�5 weeks in mice fed sugar-

free diets (Figures 4A–4C). A nutritional landscape analysis, how-

ever, identified this effect as tracking with the elevated protein
Cell Reports 32, 107880, July 14, 2020 3



Figure 2. High-Protein Diet Inhibits Pancreatic Cancer Onset and Reduces the Expression of Cell-Cycle Components

TAg+ mice were placed on either a control or a high-protein diet and assessed through MRI.

(A and B) Cumulative incidence of pancreatic cancer in mice on a control diet (n = 17) or a high-protein diet (n = 6) for female mice (A), or a control diet (n = 19) or a

high-protein diet (n = 4) for male mice (B). p values via log-rank test.

(C) Age at tumor onset. p values via Mann-Whitney test.

(D) Tumor volume increase every 2 weeks. p values via Mann-Whitney test.

(E) Representative histology from control and high-protein diet tumors. Scale, 100 mm. Inset at 2.53 magnification.

(F) Quantification of Ki67hi cells in the tumors of control and high-protein diet male and female mice (n = 3/groupwith analysis of 6 images per biological replicate).

(G) Normalized enrichment scores of gene set enrichment analysis (GSEA) for gene expression in tumors from a control diet (n = 6) compared to a high-protein diet

(n = 4).

(H and I) Graphical representation of the enrichment score of the cell cycle (H) and ribosome (I) gene sets.
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composition of the sugar-free diet (see below), demonstrating

the complexity of a multifactorial nutritional analysis. Analysis

of tumor growth rates found a trend toward higher sugar levels’

driving more rapid tumor expansion (Figure 4D). At the histolog-

ical level, a clear dose-dependent effect of the glucose content

of the diet on tumor cell proliferation and density was observed

(Figures 4E–4G). A large effect of sugar was also observed on
4 Cell Reports 32, 107880, July 14, 2020
tumor-induced mortality, with high-glucose diets driving early-

onset mortality (Figures 4H and 4I), and the sugar-free diet

significantly delaying mortality in female mice (Figure 4I). At a

transcriptional level, the tumors from high-glucose-fed mice ex-

hibited an elevated expression of cell-cycle genes and ribosome

components compared to sugar-free-fed mice (Figures 4J and

S5). Metabolic profiling revealed a reduction in amino acid levels



(legend on next page)
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in the tumors from high-glucose-fed mice (Figure 4K), possibly

indicating that amino acids were actively used for protein synthe-

sis. We then tested the association between blood glucose level

and upregulation of the cell-cycle signature within the tumor.

Across the range of diets used in this study, mice with higher

blood glucose levels showed a tendency toward high expression

of the cell-cycle signature (Figure 4L). These data indicate that

dietary sugar (or downstream mediators, such as insulin) en-

hances the cell cycle and upregulates the ribosomal capacity,

feeding the proliferation and pathogenicity of pancreatic acinar

carcinoma.

Diets include a mixture of multiple simple sugars and altered

ratios of non-sugar constituents. To dissect the effect of indi-

vidual sugar components, we followed male TAg+ mice that

were exposed, from in utero onward, to a low-sugar diet sup-

plemented with normal drinking water or drinking water con-

taining 5% fructose, 5% glucose, or 5% sucrose. Through

MRI monitoring (Figure S6), no significant effect of additional

sugar was observed on the cumulative incidence and age of tu-

mor onset (Figures 5A and 5B). The determination of growth

rates likewise indicated no effect of additional sugars on tumor

growth (Figure 5C). However, the addition of glucose, but not

fructose or sucrose, substantially increased the tumor-induced

mortality (Figure 5D). These results suggest two major roles of

dietary sugar on pancreatic cancer. First, sugar starvation is

associated with a delay in the onset and a reduction in growth

of the cancer (Figure 4). Second, excessive glucose, and not

the other sugars tested, is associated with an increase in the

lethality of the cancer (Figure 5D). To determine whether these

two properties are linked, we aged female TAg+ mice, which

demonstrated the strongest protection of a sugar-free diet (Fig-

ure 4H), on the control diet during longitudinal MRI assessment.

At the point of first tumor detection, we switched a subset of

these mice to the sugar-free diet and monitored pancreatic

cancer growth. The switch to a sugar-free diet after first tumor

detection delayed the growth of the tumors in female mice,

similar to the growth levels observed in mice continuously on

a sugar-free diet (Figure 5E). By contrast, while female mice

continually on a sugar-free diet show no tumor-induced mortal-

ity within the observation period, mice switched onto a sugar-

free diet at tumor detection maintained the high level of mortal-

ity associated with control-diet mice (Figure 5F). These results

are consistent with a model of dietary sugar in which the effect

on lethality is programmed in at the point of tumor develop-

ment, while the effect on tumor growth is a continuous

property.
Figure 3. High-Fat Diets Are Associated with Increased Pathogenicity

TAg+ mice were placed on either a control, a 10% fat, or a 30% fat diet and ass

(A and B) Cumulative incidence of pancreatic cancer in mice on a control diet (n =

control diet (n = 18), a10% fat diet (n = 9), or a 30% fat diet (n = 6) for male mice

(C) Age at tumor onset. p values via Kruskal-Wallis test with Dunn’s post hoc tes

(D) Tumor volume increase every 2 weeks. p values via Kruskal-Wallis test with D

(E) Representative histology from control, 10% fat, and 30% fat diet tumors, at 1

(F and G) Quantification of cellular density (F) and Ki67hi cells (G) in the tumors of

images per biological replicate).

(H and I) Overall pancreatic cancer survival of male (H) and female (I) mice on co

(J) Normalized enrichment scores of GSEA for gene expression in tumors from c
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Component Analysis of Complex Diets Identifies
Causative Drivers in Murine and Human Pancreatic
Cancer
Using pairwise comparisons, we identified distinct effects for di-

etary components in murine pancreatic acinar carcinoma. How-

ever, with the exception of the addition of sugar components to

water, diet modification changes the overall nutritional composi-

tion, in addition to the intended effect. We therefore performed a

nutritional landscape analysis. We directly compared the tumor

growth across a complete dietary modification set (Figures

S7A and S7B). This allowed us to measure three distinct patho-

logical features: tumor onset, tumor growth, and tumor-associ-

ated mortality. We fitted the pathological features onto a nutri-

tional principal-component analysis (PCA), and identified three

key features (Figures 6A, S7C, and S7D). First, tumor onset

inversely correlated with dietary protein levels. This relationship

was observed in a direct comparison (Figure 2); however, it is

notable that the delayed tumor onset in sugar-free diet mice (Fig-

ure 4A) can be attributed to the higher protein content of this diet,

rather than the low sugar content. Second, tumor growth rates

were driven by two dietary components, namely higher glucose

levels and lower protein levels, again, according with individual

analyses. Third, tumor mortality rates were also driven by two di-

etary components, with the stronger effect being higher glucose

levels and a weaker association with higher dietary fat levels. It is

important, however, to consider that even a largemulti-diet nutri-

tional landscape analysis is limited in the ability to attribute phe-

notypes to particular dietary components. Variation in multiple

nutritional components in each diet, variation in total energy den-

sity, and variation in food intake all can contribute to the

observed effect. This nutritional landscape analysis provides a

more nuanced view than the individual dietary component ana-

lyses we performed above, demonstrating the differential effects

of dietary nutrient on murine pancreatic acinar carcinoma.

We focused on the effects of diet on the tumor; however, diet

can also influence healthy tissue. To observe the dietary impact

on pancreatic metabolism, we performed untargeted metabolo-

mics on healthy pancreatic tissue (from wild-type mice without

pancreatic tumors), pancreatic tumors, and the unaffected tis-

sue surrounding pancreatic tumors. Distinct metabolic profiles

were observed for pancreatic cancers compared to healthy

pancreatic tissue (Figure 6B). Tumor-adjacent tissue gave an in-

termediate profile, consistent with pre-tumor formation in the

transgenic tissue.While the different diets induced distinct meta-

bolic shifts in healthy pancreatic tissue (Figure 6C), the global

metabolic profile in tumors and tumor-adjacent tissue were
of Pancreatic Cancer

essed through MRI.

17), a 10% fat diet (n = 4), or a 30% fat diet (n = 10) for female mice (A) and a

(B). p values via log-rank test.

t.

unn’s post hoc test.

4–16 weeks of age. Scale, 100 mm. Inset at 2.53 magnification.

control and high-fat diet male and female mice (n = 3/group with analysis of 6

ntrol and high-fat diets. p values via log-rank test.

ontrol fed mice (n = 6) as compared to a 30% fat diet (n = 6).
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more similar regardless of the diet (Figures 6D and 6E). This

metabolic convergence is consistent with an oncogenic pres-

sure to adopt a particular metabolic configuration for prolifera-

tion and the generation of biomass.

In the human context, studying the effect of diet on pancreatic

cancer is problematic. As a disease with late detection and an ef-

fect on patient appetite, prospective studies are essential for the

causal dissection of disease drivers. Few population studies are,

however, sufficiently powered to study such a rare cancer. We

therefore turned to the European Prospective Investigation into

Cancer and Nutrition (EPIC) study, an ongoing prospective

cohort designed to investigate the relationships between diet,

lifestyle, and environmental factors on cancer and other chronic

diseases.More than half amillion participants were enrolled in 23

centers across 10 European countries from 1992 to 2000. Epide-

miological information was collected at the time of recruitment

and included medical history, anthropometric measures, and

lifestyle and dietary characteristics, with ongoing follow-up for

cancer outcomes. For the current analysis, epidemiologic data

were available for 465,076 individuals, 1,344 individuals of which

had developed pancreatic cancer during the follow-up period.

Using amultivariable Cox proportional hazardsmodel and taking

into account smoking status, body mass index (BMI), age, dia-

betes, and sex, we evaluated the effects of eight dietary compo-

nents on the risk of pancreatic cancer. The only significant effect

observed was a protective effect of dietary plant fat, with a haz-

ard ratio of 0.9926 (Table S1), which translates to a �0.74%

decrease in the risk of pancreatic cancer development per

gram increase in daily plant fat consumption. This effect was

largely unchanged following control for by diabetes, smoking,

BMI, age at recruitment, or sex (see Data Resource onMendeley

Data in STAR Methods).

We investigated genotype-dependent dietary effects through

integrating nutritional information with genotype information for

5,726 individuals comprising 465 pancreatic cancer cases and

5,261 controls. A genome-wide gene3 environment (GxE) inter-

action analysis was conducted to detect interactions between

dietary factors and genotype on pancreatic cancer susceptibility

(Figure S8). A total of 5 loci reached p values of %10�7 for their

effect on pancreatic cancer susceptibility given the sugar intake

(Table 1). One locus, at LINC01365 neighboring the MAD2L1

gene (Table 1) and within a regulatory region linked to MAD2L1

expression (Figure S9), reached a p value of 7.3 3 10�8 for
Figure 4. Dietary Sugar Drives the Onset, Growth, and Pathogenicity o
TAg+ mice were placed on either a control, a high-glucose, or a sugar-free diet a

(A and B) Cumulative incidence of pancreatic cancer in mice on a control (n = 17)

control (n = 18), high-glucose (n = 7), or a sugar-free (n = 6) diet in male mice (B)

(C) Age at tumor onset. p values via Kruskal-Wallis test with Dunn’s post hoc tes

(D) Tumor volume increase every 2 weeks. p values via Kruskal-Wallis test with D

(E) Representative histology from sugar-free, control, and high-glucose diet tum

(F and G) Quantification of cellular density (F) and Ki67hi cells (G) in the tumors of

with analysis of 6 images per biological replicate).

(H and I) Overall pancreatic cancer survival of female (H) and male (I) mice on co

(J) Normalized enrichment scores of GSEA for gene expression in tumors from s

(K) Metabolite levels of sugar-free versus high-glucose-fed mice (n = 10, 25).

(L) Tumors frommice fed control (n = 4), high-protein (n = 6), high-glucose (n = 6), 1

Mice were categorized based on their blood glucose level at tumor harvesting an

assessed.
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GxE with sugar intake. An interaction between sugar intake

and MAD2L1 expression is supported through our transcrip-

tional analysis of murine tumors, in which dietary glucose levels

were positively associated with the regulation ofMad2l1 expres-

sion in the tumor (Figure 6F). We also observed one locus modi-

fying the previously identified effect of plant fat consumption on

pancreatic cancer risk (p < 10�5). The top locus, DIRC3, had a p

value of 3.07 3 10�6 (Table 1; Figure S10). We further evaluated

these loci with credible set analysis (Fuchsberger et al., 2016).

We constructed credible sets of variants that contain the variant

causal for the corresponding association signal with R99%

probability. These results demonstrate that, as in mice, the nutri-

tional composition of the diet influences susceptibility to pancre-

atic cancer in humans.

DISCUSSION

The parallel analysis of multiple obesity, diabetes, and diet-

related variables in pancreatic cancer mice has identified two

key principles of pancreatic cancer susceptibility. The first is

that pancreatic cancer onset, growth, and lethality can bemodu-

lated via independent forces, rather than being inherently linked

characteristics. A reasonable supposition could have beenmade

that pancreatic cancer lethality was simply derived from tumor

growth rates; here, however, we identify multiple contexts

(high-fat diet, dietary sugar withdrawal) in which these effects

were disentangled. The second key principle is that both quanti-

tative and qualitative effects of diet were observed, with a

distinct modulation of pancreatic cancer by calorie quantity

(obesity) and source (nutrient composition). The former principle

cannot be addressed using existing patient datasets; the latter

principle was observed in the EPIC study, with nutrient compo-

sition also modulating pancreatic cancer susceptibility in a pro-

spective human cohort. We can consider the effects of diet on

each of the pancreatic cancer kinetic features in turn.

Tumor Onset: in the nutritional landscape analysis, delayed tu-

mor onset tracked strongly with increased dietary protein. High-

protein diets have been observed to inhibit tumor initiation in

non-pancreatic tumor models (Ho et al., 2011). However,

pancreatic cancers, unlike healthy pancreatic cells, rely on exog-

enous protein for proliferation, taken in via macropinocytosis

(Davidson et al., 2017; Wyant et al., 2017). Furthermore, high

circulating plasma branched-chain amino acids (BCAAs) are
f Pancreatic Cancer
nd assessed through MRI.

, a high-glucose (n = 8), or a sugar-free (n = 8) diet in female mice (A), and on a

. p values via log-rank test.

t.

unn’s post hoc test.

ors, at 12–16 weeks of age. Scale, 100 mm. Inset at 2.53 magnification.

sugar-free, control, and high-glucose diet male and female mice (n = 3/group,

ntrol and altered sugar diets. p via log-rank test.

ugar-free fed mice as compared to a high-glucose diet (n = 6/group).

0% fat (n = 6), and 30% fat (n = 6) diets, as assessed for cell-cycle expression.

d gene set variation analysis (GSVA) enrichment of the cell-cycle gene set was



Figure 5. Sugar Withdrawal Slows Pancreatic Cancer Growth without Restoring Survival

TAg+ mice were placed on an alternative nutritional exposure and assessed through MRI.

(A) Cumulative incidence of pancreatic cancer inmalemice on a low-sugar diet with normal drinking water (n = 24) or drinking water containing 5%glucose (n = 8),

5% fructose (n = 10), or 5% sucrose (n = 8). p values via log-rank test.

(B) Age at tumor onset. p values via Kruskal-Wallis test with Dunn’s post hoc test.

(C) Tumor volume increase every 2 weeks. p values via Kruskal-Wallis test with Dunn’s post hoc test.

(D) Overall survival of mice.

(E) Female TAg+ mice on a control diet were assessed through MRI for tumors. At first detection, cohorts of mice were switched to a sugar-free diet. Longitudinal

monitoring of tumor growth in female mice with either a continued control diet (n = 17), a sugar-free diet (n = 8), or a switch to a sugar-free diet (n = 10). Tumor

volume increase occurred every 2 weeks. p values via Kruskal-Wallis test with Dunn’s post hoc test.

(F) Overall survival of female mice on control, sugar-free, or control / sugar-free switched diets. p values via log-rank test.
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strongly associated with pancreatic cancer (Mayers et al., 2014).

A potential unification of these discrepancies may lie in the origin

of these BCAAs, with pancreatic cancer associated with the

long-term pool derived from tissue breakdown rather than the

short-term dietary pool (Mayers et al., 2014). The availability of

high dietary protein may inhibit this tissue breakdown and thus

indirectly inhibit tumor initiation; however, further mechanistic

work is required.

Tumor Growth: in our mouse study, three diet-related factors

independently increased the rate of pancreatic cancer growth:

calorie quantity, reduced proportions of dietary protein, and

the presence of dietary sugar. Of particular importance is insulin,

which is elevated in the obese mouse strains and is increasingly

recognized as a potential mitogen (see below). As the expression

of many of thesemediators is altered in obese versus non-obese

adipose tissue (Hansen et al., 2010; Incio et al., 2016), it is likely

that the effect observed here is mediated by the cumulative

impact of these factors. The function of sugar, in particular

glucose, in increasing the rate of tumor growth is potentially ex-

plained by the Warburg effect. Unlike the pre-cancerous precur-

sor cells, which typically use the efficient oxidative phosphoryla-
tion pathway, most cancer cells use aerobic glycolysis (Vander

Heiden et al., 2009). While aerobic glycolysis is less efficient at

energy metabolism, it allows the rapid expansion of biomass

required for highly proliferative cells and appears to confer other

important advantages (Kim and Dang, 2006). Under the tradi-

tional Warburg model, the dependence of cancer cells on aero-

bic glycolysis makes glucose availability a limiting factor for en-

ergy production, with additional glucose thus allowing more

rapid division. An alternative explanation for the Warburg phe-

nomenon is that increased glycolysis is more important for car-

bon incorporation into the dividing biomass rather than ATP pro-

duction (Lunt and Vander Heiden, 2011). Here, we find

suggestive molecular evidence to indicate that dietary sugar

drives the cell cycle in pancreatic cancer cells, with increased ri-

bosomal capacity and utility for biomass production. Perhaps

the most attractive hypothesis for molecular mechanism is hy-

perinsulinemia. While insulin secretion was not measured in

our study, hyperinsulinemia is a well-known risk factor for

pancreatic cancer (Andersen et al., 2017). Identifying the causa-

tive direction of this association is problematic; however, genetic

reduction in insulin secretion capacity in the KrasG12D mouse
Cell Reports 32, 107880, July 14, 2020 9



Figure 6. Nutritional Landscape Modeling Identifies Independent Effects of Dietary Protein, Fat, and Sugar on Pancreatic Cancer in Mice

For a Figure360 author presentation of Figure 6, see https://doi.org/10.1016/j.celrep.2020.107880.

(A) TAg+ mice on control (n = 22), high-protein (n = 10), 10% fat (n = 15), 30% fat (n = 16), high-glucose (n = 15), or sugar-free diets (n = 14) were longitudinally

monitored for pancreatic cancer growth. For each diet, the proportion of dietary components (fat, protein, and sugar) and total energy density were plotted on a

principal-component analysis (PCA) plot (red). The average age of tumor onset, lethality, and growth rate effects is shown in blue.

(B) Wild-type mice on control (n = 4), high-protein (n = 7), 10% fat (n = 8), 30% fat (n = 9), high-glucose (n = 7), sugar-free (n = 5), or low-sugar diets (n = 6) were

harvested for healthy pancreatic tissue. TAg+ mice were harvested for pancreatic tumors or tumor-adjacent tissue after being fed control (n = 12, 6), high-protein

(n = 14, 8), 10% fat (n = 18, 10), 30% fat (n = 12, 8), high-glucose (n = 24, 13), sugar-free (n = 8, 13), or low-sugar diets (n = 9, 5). Global PCA analysis of untargeted

metabolomics on all of the samples, coded by tissue type.

(C–E) PCA analysis of untargeted metabolomics in healthy pancreatic tissue (C), adjacent tissue (D), or tumor tissue (E), color-coded by diet.

(F) Expression of Mad2l1 in pancreatic cancers harvested from mice with different diets mapped onto the nutritional landscape.
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model results in a slowing of pancreatic cancer initiation (Zhang

et al., 2019). Together with the efficacy of phosphatidylinositol 3-

kinase (PI3K) inhibitors, suppressing insulin signaling, in pre-clin-

ical models of pancreatic cancer (Hopkins et al., 2018), this

suggests that increased insulin secretion may be a primary

mechanism by which obesity and dietary glucose influences

pancreatic cancer. The effect of dietary protein in suppressing

tumor proliferation was not predicted; however, it appears to

act in direct opposition of dietary sugar, downregulating the

same key pathways.

Tumor-AssociatedMortality: three individual factors increased

the mortality rate from pancreatic cancer—obesity, high-fat di-

ets, and high-glucose diets. In the case of obesity, it is unlikely

that mortality can be directly attributed to the concurrent effect

on the cancer growth rate, as the obese mice died with tumor

burdens that were far lower than those of wild-type mice. For

both the high-fat and high-glucose diets, we also have formal ev-

idence that the effect on mortality was independent. For the

high-fat diet, the excessive mortality in male mice fed a high-

fat diet was not accompanied by increased tumor growth rates.
10 Cell Reports 32, 107880, July 14, 2020
For dietary glucose, switching high-glucose mice onto a sugar-

free diet at tumor detection dramatically slowed tumor growth

rates, but did not decrease mortality. Whether these are two

distinct effects or whether the increased mortality in high-fat

diet-fed mice is due to elevated sugars in the same diets, is

debatable. Regardless, two possibilities exist to account for

this growth-independent effect on mortality. First, it is plausible

that the dietary exposures imprint on the developing cancer a

more pathogenic phenotype. The factors that determine the

pathogenicity of pancreatic cancer are poorly defined, but could

include the precise anatomical location where the tumor de-

velops (Artinyan et al., 2008) or the increased expression of toxic

by-products such as lipases (Hirschi et al., 1991; Niedergeth-

mann et al., 2004). A second, not mutually exclusive, possibility

is that the tumor itself is unaffected by the dietary exposure,

but the host is rendered more sensitive. An analogy can be

made here to the increased lethality of pancreatic cancer in

less robust older patients (Niedergethmann et al., 2004). In this

regard, it is notable that added dietary glucose in mice increases

mortality and decreases competitive fitness (Ruff et al., 2013),

https://doi.org/10.1016/j.celrep.2020.107880


Table 1. Gene-Environment Interactions for Dietary Components in Pancreatic Cancer Susceptibility

Chr:position Lead SNP Allele Freq OR (95% CI) Interaction p Value

Genetic Interactions with Sugar Intake

ST6GALNAC3 1:76863822 rs2392033 T/C 0.33 1.00069 (1.00045–1.00092) 1.13 3 10�8

LAMA2 6:129773785 rs1336255 G/A 0.41 1.00062 (1.0004–1.00084) 2.38 3 10�8

DNAH7 2:196591273 rs79514005 C/T 0.05 1.0014 (1.00088–1.0019) 3.55 3 10�8

LINC01365 / MAD2L1 4:120688046 rs80287428 C/G 0.06 1.0013 (1.0008–1.0017) 7.3 3 10�8

CSMD1 8:2759532 rs341752 C/G 0.22 1.00068 (1.00042–1.00094) 3.07 3 10�7

Genetic Interactions with Plant Fat Intake

DIRC3 2:218369738 rs12328323 G/A 0.39 1.0015 (1.00086–1.0021) 3.07 3 10�6

Sample size of 5,226 individuals comprising 465 pancreatic cancer cases and 5,261 controls. The most significant associations in each respective

dietary group are shown, for dietary factors with suggestive (p% 10�5) or greater associations. EA, effect allele; EAF, effect allele frequency; Freq (ef-

fect allele frequency), based on EPIC control samples; NEA, non-effect allele; 95%CI, 95%confidence interval; OR, odds ratio; SNP, single-nucleotide

polymorphism.
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and intravenous glucose delivery increases mortality in critically

ill patients (der Voort et al., 2006). Recently, it has been observed

in mouse pancreatic ductal adenocarcinoma that preventing ad-

ipose tissuewasting decreases survival, suggesting that adipose

tissue is both responsive to pancreatic cancer and contributes to

themortality of cancer-bearing mice (Danai et al., 2018). Support

for this model is found in our global metabolic analysis, in which

the effect of diet was greater in healthy tissue than in the tumor

tissue itself. This potential interplay between tumor toxicity and

host fragility in determining tumor-associated mortality in-

creases the complexity of identifying molecular mediators.

The human epidemiological study identified two signals, a

beneficial effect of dietary plant-derived fat and a (geno-

type-dependent) detrimental effect of dietary sugars. The

beneficial effect of plant-derived fat was not assessed in the

mouse study, which used animal-based fats. A beneficial ef-

fect of dietary plant-derived fats could explain the �50%

reduced incidence of pancreatic cancer observed in vegetar-

ians (Appleby et al., 2016). While this could also be mediated

by meat avoidance, no direct detrimental effect of red meat

consumption on pancreatic cancer was observed in the

EPIC cohort (Rohrmann et al., 2013), making a protective ef-

fect of plant-derived fats a more attractive hypothesis. A

plethora of plant-derived molecular mediators have been pro-

posed to have anti-cancer properties, contributing to the

health benefits of the ‘‘Mediterranean diet.’’ The EPIC cohort

analysis revealed an additional gene-dependent effect of

glucose, linked to allelic variation in the long non-coding

LINC01365 gene. LINC01365 itself has no known function

and may be a transcribed enhancer for the neighboring

gene, MAD2L1. MAD2L1 encodes a spindle assembly check-

point protein involved in chromosome stability and the cell cy-

cle. Increased MAD2L1 expression is associated with breast

ductal, salivary duct, and hepatocellular cancers (Ko et al.,

2010; Li et al., 2017; Scintu et al., 2007; Wang et al., 2015)

via driving tumor proliferation (Li et al., 2017). MAD2L1 has

also been implicated in the pathogenesis of pancreatic ductal

adenocarcinomas (Fukuhisa et al., 2019). The MAD2L1

pathway is intimately linked to the insulin signaling pathway

(Choi et al., 2016), and we demonstrate in mice a direct rela-

tionship between dietary sugar and Mad2l1 expression. Syn-
ergistic effects of genetic variation and glucose-mediated up-

regulation on MAD2L1 expression could precipitate initiation

of the cell cycle, contributing to the early formation of the tu-

mor and subsequent aggressiveness.

Our study uses both mouse models and human epidemiolog-

ical data to dissect the effect of nutrition on pancreatic cancer.

There are strengths and limitations to both approaches. With

the inability to dissect the interacting risk factors from patient

data, reliance on animal models is critical to formally separate ef-

fects such as obesity versus nutrition. Nevertheless, the limita-

tions of the mouse model used here need to be considered. A

multitude of animal models for pancreatic cancer exist (Saloman

et al., 2019). The TAg oncogenic driver is relatively crude,

although the molecular impact has been well studied, and the

disruption of both KRAS and p53, two commonly mutated genes

in pancreatic cancer patients (Hidalgo, 2010), results in an aber-

rations similar to patients (Hobbs et al., 2016). A more important

limitation may be the acinar origin of the tumor, which only re-

flects a minority of patient cases. Of note, the TAg system

does model the complexity of tumor composition, with the inter-

action of genetically heterogeneous cancer cells, cancer stem

cells, tumor stroma, and the immune system, a complexity that

is generally lost in cell line systems, even after transfer into

mice. Epidemiological work in patients overcomes many of the

difficulties of animal models. We should note, however, that

even the best-designed observational trial will suffer from unac-

counted for confounding effects and erroneous data. In partic-

ular, nutritional measurement is notoriously different to validate

and changes over time. The heterogeneity in pancreatic cancer

type and the limitation of looking at a single snapshot of the

diet also dilute effect sizes. In this regard, we consider themouse

and epidemiological aspects to synergize, with effects observed

across both methodologies that are much more likely to be

robustly reproduced. Here, the interactions between dietary

sugar and MAD2L1 stand out, with potentially profound clinical

implications. An improved understanding of which dietary fac-

tors act as pancreatic cancer risk factors could allow earlier

screening and improved detection. Finally, dietary modification

is a potential pathway to restrict tumor growth, such as glucose

restriction in individuals bearing the risk allele neighboring

MAD2L1. We would, however, based on our mouse results,
Cell Reports 32, 107880, July 14, 2020 11
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caution that even dietary interventions that succeeded in slowing

tumor growth may not affect mortality.
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N., Stancáková, A., Chen, Y., Varga, T.V., et al.; CVD50 Consortium; GERA-

D_EC Consortium; Neurology Working Group of the Cohorts for Heart; Aging

Research in Genomic Epidemiology (CHARGE); Alzheimer’s Disease Genetics

Consortium; Pancreatic Cancer Cohort Consortium; European Prospective

Investigation into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD);

EPIC-InterAct; CHARGE Consortium; CHD Exome+ Consortium; CARDIO-

GRAM Exome Consortium (2016). A genomic approach to therapeutic target

validation identifies a glucose-lowering GLP1R variant protective for coronary

heart disease. Sci. Transl. Med. 8, 341ra76.

Siegel, R.L., Miller, K.D., and Jemal, A. (2016). Cancer statistics, 2016. CA

Cancer J. Clin. 66, 7–30.

Sievert, C. (2020). InteractiveWeb-Based Data Visualization with R, plotly, and

shiny (CRC Press).

Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., and Siuzdak, G. (2006).

XCMS: processing mass spectrometry data for metabolite profiling using

nonlinear peak alignment, matching, and identification. Anal. Chem. 78,

779–787.
14 Cell Reports 32, 107880, July 14, 2020
Tevethia, M.J., Bonneau, R.H., Griffith, J.W., and Mylin, L. (1997). A simian vi-

rus 40 large T-antigen segment containing amino acids 1 to 127 and expressed

under the control of the rat elastase-1 promoter produces pancreatic acinar

carcinomas in transgenic mice. J. Virol. 71, 8157–8166.

Therneau, T.M., and Grambsch, P.M. (2000). Modeling Survival Data: Extend-

ing the Cox Model (Springer).

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understand-

ing the Warburg effect: the metabolic requirements of cell proliferation. Sci-

ence 324, 1029–1033.

Wang, Z., Katsaros, D., Shen, Y., Fu, Y., Canuto, E.M., Benedetto, C., Lu, L.,

Chu, W.M., Risch, H.A., and Yu, H. (2015). Biological and Clinical Significance

of MAD2L1 and BUB1, Genes Frequently Appearing in Expression Signatures

for Breast Cancer Prognosis. PLOS ONE 10, e0136246.

Whitcomb, D.C., Shelton, C.A., and Brand, R.E. (2015). Genetics and Genetic

Testing in Pancreatic Cancer. Gastroenterology 149, 1252–1264.e4.

Wyant, G.A., Abu-Remaileh, M., Wolfson, R.L., Chen, W.W., Freinkman, E.,

Danai, L.V., Vander Heiden, M.G., and Sabatini, D.M. (2017). mTORC1 Acti-

vator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes

and Use Protein as a Nutrient. Cell 171, 642–654.e2.

Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package

for comparing biological themes among gene clusters. OMICS 16, 284–287.

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman,

J.M. (1994). Positional cloning of the mouse obese gene and its human homo-

logue. Nature 372, 425–432.

Zhang, A.M.Y., Magrill, J., deWinter, T.J.J., Hu, X., Skovsø, S., Schaeffer, D.F.,

Kopp, J.L., and Johnson, J.D. (2019). Endogenous Hyperinsulinemia Contrib-

utes to Pancreatic Cancer Development. Cell Metab. 30, 403–404.

http://refhub.elsevier.com/S2211-1247(20)30861-5/sref52
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref52
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref52
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref52
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref53
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref53
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref53
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref54
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref54
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref54
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref54
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref55
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref56
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref56
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref57
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref57
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref58
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref58
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref58
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref58
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref59
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref59
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref59
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref59
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref60
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref60
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref61
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref61
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref61
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref62
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref62
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref62
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref62
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref63
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref63
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref64
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref64
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref64
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref64
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref65
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref65
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref66
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref66
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref66
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref67
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref67
http://refhub.elsevier.com/S2211-1247(20)30861-5/sref67


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-Trypsin R&D Systems AF3565

Rat Anti-CD31 clone: MEC13.3 Biolegend 102502

Rabbit Anti-Ki67 Abcam ab15580

DAPI Life Technologies D1306

Chicken anti-Rat Alexa Fluor 647 Life Technologies A21472

Donkey anti-Rabbit Alexa Fluor 555 Life Technologies A31572

Donkey anti-Goat Alexa Fluor 488 Life Technologies A11055

Critical Commercial Assays

HumanHap550v3 Genotyping BeadChip Illumina https://www.illumina.com

HumanOmniExpress-12v1_A Genotyping

BeadChips

Illumina https://www.illumina.com

Illumina 660W Illumina https://www.illumina.com

RNA isolation: RNeasy Mini kit QIAGEN Cat No./ID: 74106

QuantSeq 30mRNA-Seq Library Prep Kit for

Illumina

Lexogen https://www.lexogen.com

Deposited Data

Transcriptome data (original) ArrayExpress as

dataset E-MTAB-8227

This paper https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-8227/

Haplotype Reference Consortium panel Loh et al., 2016 http://www.haplotype-reference-

consortium.org/

Data Resource 1: Dietary composition https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Data Resource 2: Cumulative incidence and

survival curves in mice

https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Data Resource 3: Nutritional landscape modeling https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Data Resource 4: Transcriptome analysis https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Data Resource 5: Full dataset of Liquid

chromatography mass spectrometry

https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Data Resource 6: Cox proportional hazards model https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Data Resource 7: Data characteristics and matrix

of Pearson correlation coefficients

https://doi.org/10.17632/wcb2xsg6pj.3 https://data.mendeley.com/datasets/

wcb2xsg6pj/3

Experimental Models: Organisms/Strains

B6.CgTg(Ela1TAg*)289Mjt/J The Jackson Laboratory https://www.jax.org/

B6.Cg-Lepob/J The Jackson Laboratory https://www.jax.org/

B6.BKS(D)-Leprdb/J The Jackson Laboratory https://www.jax.org/

Software and Algorithms

STAR aligner Dobin et al., 2013 https://github.com/alexdobin/STAR

‘‘EdgeR’’ Robinson et al., 2010 www.bioconductor.org

Proteowizard toolkit Harrell, 2019 http://proteowizard.sourceforge.net

ImagJ software National Institute of Health, Bethesda,

USA

Open source image processing software

(https://imagej.nih.gov/ij/download.html)

R programming language v3.4.3 R Core Team, 2013 https://www.R-project.org/

‘‘rms’’ v5.1-3.1 Harrell, 2019 https://www.R-project.org/
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‘‘survival’’ v2.44-1.1 Therneau and Grambsch, 2000 https://www.R-project.org/

‘‘lme4’’ v3.1-140 Pinheiro et al., 2019 https://www.R-project.org/

‘‘vegan’’ Oksanen et al., 2010 https://www.R-project.org/

flashPCA v2.0 Abraham et al., 2017 https://github.com/gabraham/flashpca

‘‘limma’’ Kutalik et al., 2011 www.bioconductor.org

‘‘plotly’’ v4.8.0.9000 Sievert, 2020 https://www.R-project.org/

‘‘clusterProfiler’’ v3.6.0 Yu et al., 2012 N/A

‘‘GSVA’’ v1.26.0 Hänzelmann et al., 2013 www.bioconductor.org

PLINK software v1.90 Purcell et al., 2007 https://www.cog-genomics.org/plink/2.0/

QUICKTEST v0.95 Kutalik et al., 2011 https://wp.unil.ch/sgg/program/quicktest/

XCMS Smith et al., 2006 N/A

Molecular Signatures Database MSigDB version 5.2 http://bioinf.wehi.edu.au/software/MSigDB/

Other

low sugar chow (ssniff� R/M-H) ssniff� http://www.ssniff.com/

control diet (ssniff� EF R/M Control) ssniff� http://www.ssniff.com/

10% fat diet (ssnaiff� EF R/M with 10% Fat) ssniff� http://www.ssniff.com/

30% fat diet (ssniff� EF R/M with 30% Fat) ssniff� http://www.ssniff.com/

high glucose diet (ssniff� EF R/M High glucose) ssniff� http://www.ssniff.com/

sugar-free diet (ssniff� EF R/M Glucose free,

low CH)

ssniff� http://www.ssniff.com/

high protein diet (ssniff� EF R/M High Protein) ssniff� http://www.ssniff.com/
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Adrian Liston (Adrian.Liston@babraham.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Data and code availability are provided through Data Resource files on Mendeley Data (https://doi.org/10.17632/wcb2xsg6pj.3

https://data.mendeley.com/datasets/wcb2xsg6pj/3). Dietary composition data is available in Data Resource 1. Full R analysis script

and processed data for age tumor onset and tumor growth comparisons, aswell as cumulative incidence andmortality curves inmice

are available in Data Resource 2. Full R analysis script for nutritional landscapemodeling analysis and processed data are available in

Data Resource 3. The normalized RNaseq data is given in Data Resource 4 and the original data is available at ArrayExpress as data-

set E-MTAB-8227 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8227/). The full dataset of Liquid chromatography

mass spectrometry is provided in Data Resource 5. Cox proportional hazards models for effect of dietary nutrients on pancreatic

cancer susceptibility are available on Data Resource 6. Data characteristics and matrix of Pearson correlation coefficients are avail-

able in Data Resource 7.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Ela1-TAg (Ornitz et al., 1987; Tevethia et al., 1997), Leprdb/db (Chen et al., 1996) and Lepob/ob mice (Zhang et al., 1994) were pur-

chased from Jackson on the C57BL/6 background and intercrossed. Both male and female mice were used, with longitudinal

tracking. Sex and age are indicated on figures. The composition of the diets used is available in Data Resource 1 on Mendeley

Data (https://dx.doi.org/10.17632/wcb2xsg6pj.3). In brief: low sugar chow (ssniff� R/M-H; 4.7 w/v sugar, 3.3% w/v fat, 19.0% w/

v protein, ‘‘house diet’’), control diet (ssniff� EF R/M Control; 10.8% w/v sugar, 4.2% w/v fat, 20.8% w/v protein), high protein

diet (ssniff� EF R/M High Protein; 10.3% w/v sugar, 8.3% w/v fat, 45.2% w/v protein), 10% fat diet (ssniff� EF R/M with 10%

Fat, beef tallow-derived; 18.3% w/v sugar, 10.1% w/v fat, 20.7% w/v protein), 30% fat diet (ssniff� EF R/M with 30% Fat, beef
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tallow-derived; 17.8% w/v sugar, 30.1% w/v fat, 20.8% w/v protein), high glucose diet (ssniff� EF R/M High glucose; R 50.0% w/v

sugar, 2.9%w/v fat, 19.1%w/v protein) and sugar-free diet (ssniff� EFR/MGlucose free, lowCH;% 2.0%w/v, 11.3%w/v fat, 52.5%

w/v protein). Where indicated, drinking water was modified through the addition of 5% w/v glucose, 5% w/v fructose or 5% w/v su-

crose. Except where indicated (‘‘switched’’), all dietary exposures were continual from the in utero stage onward, with breeder cages

set up on the indicated diet, and transfer of pups at weaning to the same dietary exposure. Average daily food intake for the different

diets was measured in a parallel wild-type cohort (Figure S4A), however individual variation in the total food intake of tumor mice was

notmeasured.Micewere bred under specific pathogen–free conditions andmoved to conventional conditions at sevenweeks of age

for longitudinal magnetic resonance imaging (MRI). Mouse housing conditions were kept at 20�C. All mice were used in accordance

with the University of Leuven Animal Ethics Committee. Mouse-weight and non-fasting blood glucose were monitored throughout, in

the mid-afternoon.

Human subjects
For evaluating the effect of diet on pancreatic cancer, we included individuals from the European Prospective Investigation into Can-

cer and Nutrition (EPIC) cohort with collected epidemiological information at the time of recruitment (1992-2000) for medical history,

anthropometric measures and lifestyle/dietary characteristics. Personal identifying information, as available at local centers, is not

transferred to the Internal Review Board of the International Agency for Research on Cancer (IARC) co-ordinating center. Informed

consent was provided by each participant, and projects using the EPIC resource need to be cleared by both the IARC and local

ethical review committees. For this analysis, epidemiologic and dietary data was available for 459,231 individuals [1,314 pancreatic

cancer cases (males = 561 with agerecruitment = 57.07 ± 7.35 (mean ±SD) and ageexit = 66.45 ± 8.29; females = 753 with agerecruitment =

57.36 ± 7.66 and ageexit = 67.12 ± 8.53) and 457,917 non-cases (males = 133,539 with agerecruitment = 52.13 ± 9.91 (mean ± SD) and

ageexit = 66.34 ± 9.92; females = 324,378 with agerecruitment = 50.70 ± 9.67 and ageexit = 64.80 ± 10.03)]. The EPIC data collection and

the study population has been described in detail (Riboli et al., 2002). Incident pancreatic cancer cases were identified using a num-

ber of methods depending on the study center. Denmark, Italy, the Netherlands, Spain and the United Kingdom used population can-

cer registries. In France and Germany, pancreatic cancer cases were identified during follow-up from a combination of sources

including health insurance records, cancer and pathology registries, and active follow-up directly through study participants or their

next of kin. All cases were diagnosed with incident primary malignant adenocarcinoma of the exocrine pancreas. For the gene x envi-

ronment (GxE) interaction analysis, we included 465 pancreatic cancer cases (males = 212 with agerecruitment = 56.11 ± 7.64

(mean ± SD) and ageexit = 62.12 ± 7.78; females = 253 with agerecruitment = 57.43 ± 7.27 and ageexit = 64.64 ± 8.07) and 5261 con-

trols (males = 1995with agerecruitment = 52.36 ± 9.11 (mean ± SD) and ageexit = 67.09 ± 9.36; females = 3266with agerecruitment =

51.41 ± 9.51 and ageexit = 66.37 ± 10.20). Genotyping data for all cases and a control cohort (N = 318) were received from the

Pancreatic Cancer Cohort Consortium (PanScan) working groups [Panscan I (males = 333 with agerecruitment = 56.77 ± 7.77

(mean ± SD) and ageexit = 66.32 ± 9.26; females = 312 with agerecruitment = 57.12 ± 6.90 and ageexit = 67.53 ± 8.95)

and II (males = 48 with agerecruitment = 54.55 ± 7.68 (mean ± SD) and ageexit = 64.56 ± 7.99; females = 90 with

agerecruitment = 57.60 ± 7.51 and ageexit = 67.61 ± 7.85) subsets] and an additional set of 4,943 controls was received from

EPIC InterAct (males = 1,855 with agerecruitment = 51.94 ± 9.09 (mean ± SD) and ageexit = 66.69 ± 9.38; females = 3,088 with

agerecruitment = 51.14 ± 9.55 and ageexit = 66.06 ± 10.22) (Scott et al., 2016).

METHOD DETAILS

Magnetic Resonance Imaging
MRI was selected for longitudinal imaging in preference to computed tomography (CT) based on superior contrast in the rodent

pancreas (a soft organ, unlike in humans), the ability to run without contrast agents that alter intestinal motility, and the non-ionizing

nature of the scan. Mice were scanned under isoflurane anesthesia using a Bruker Biospin 9.4 Tesla Biospec small animal MR scan-

ner (Bruker Biospin, Ettlingen, Germany). The scanner was equipped with an actively shielded gradient set of 600mT/m using a respi-

ration triggered spin echo sequence (RARE) with 50 continuous slices of 0.5 mm thickness in interlaced mode (acquisition param-

eters: repetition time = 6000 ms, echo time = 15.9 ms, field of view = 4.0 3 6.0 cm, a matrix of 200 3 400, two dummy scans and

two averages). For radio-frequency irradiation and detection, a 7.2 cm quadrature resonator was used. Mice were scanned every

two weeks, without the use of contrast. Operators were masked to the genotype and treatment, and analysis was performed blinded

to genotype and diet. Scans were processed in reverse chronological order, allowing the location of large end-point tumors to be

identified and correlated with earlier time-point locations. Tumor numbers were recorded at end-point necroscopy and compared

with the final MRI scan. The tumor size detection limit with this approach was determined to be 2-3mm in diameter.

Immunofluroscent imaging
Pancreatic tumors were fresh frozen in OCT, fixed in 4% PFA or acetone, and stained according to manufacturer’s protocol. Size-

matched (0.8-1.2g) tumors were selected for analysis. Sections were stained using the polyclonal Ki67 (Rabbit Anti-Ki67, Abcam

ab15580), Trypsin 3 / PRSS3 (Goat anti-Trypsin, R&D Systems AF3565) and monoclonal Anti-CD31 (Rat Anti-CD31 clone:

MEC13.3, Biolegend 102502). For immunofluorescence the following detection antibody were used: Donkey anti-Goat Alexa Fluor

488 (Life Technologies, A11055), Donkey anti-Rabbit 555 (Life Technologies, A31572), Chicken anti-Rat 647 (Life Technologies,
Cell Reports 32, 107880, July 14, 2020 e3
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A21472) and DAPI (Life Technologies, D1306). Images were acquired using a Ziess 780 confocal microscope. Images were analyzed

using ImageJ (National Institute of Health, Bethesda, USA) to calculate MFI on a per cell basis utilizing watershed function and

excluding cells on the edge. The cells with an MFI > 80 were defined as ‘‘high’’ MFI positive for Ki67 analysis.

RNA-Seq data generation and pre-processing
RNaseq was performed on tumors extracted from TAg+ mice fed control, low sugar, high protein, 10% fat, 30% fat, high glucose, or

sugar-free diets. Mice were assessed for tumor formation by palpation and dissected tumors were selected for similar size (0.8-1.2g)

before sample freezing. Total RNA was isolated using RNeasy Mini kit (QIAGEN). RNA concentration and purity were determined

spectrophotometrically using the Nanodrop ND-1000 (Nanodrop Technologies) and RNA integrity was assessed using a Bioanalyser

2100 (Agilent). 30mRNA-seq library preparation and transcriptome analysis was performed by Lexogen (Austria) using the QuantSeq

30mRNA-Seq Library Prep Kit for Illumina and QuantSeq data analysis workflow. Sample alignment was generated by STAR aligner.

Raw count gene expression data were and normalized using trimmedmean of M-values (TMM) available from the ‘‘EdgeR’’ package

(Robinson et al., 2010). The normalized dataset is given in Data Resource 4 at Mendeley Data (https://doi.org/10.17632/wcb2xsg6pj.

3). The original data is available at ArrayExpress as dataset E-MTAB-8227 (https://www.ebi.ac.uk/arrayexpress/experiments/

E-MTAB-8227/).

Liquid chromatography mass spectrometry
Pancreatic tissuewasweighed (10–15mg) and pulverized (Cryomill, Retsch) under liquid-nitrogen conditions. Polar metabolites were

extracted from the pulverized tissue in 50%LC-MSgrademethanol / LC-MS grademethanol 30%acetonitrile / 20%water (at�80�C)
as described previously (Cantelmo et al., 2016). Next, proteins were pelleted by centrifugation at 20,000xg for 10 min at 4�C. The
supernatant was transferred to a new Eppendorf and dried using a SpeedVac evaporator (Labconco). The dried metabolite samples

were resuspended in 60% acetonitrile (LC-MS grade) and transferred to LC-MS vials. Measurements were performed using a Dionex

UltiMate 3000 LCSystem (Thermo Scientific) in-line connected to aQ-Exactive Orbitrapmass spectrometer (Thermo Scientific). 15 ul

of sample was injected and loaded onto a Hilicon iHILIC-Fusion (P) column (Achrom). A linear gradient was carried out starting with

90% solvent A (LC-MS grade acetonitrile) and 10% solvent B (10 mM ammoniumacetate pH 9.3). From 2 to 20 minutes the gradient

changed to 80%B and was kept at 80% until 23 min. Next a decrease to 40%Bwas carried out to 25min, further decreasing to 10%

B at 27 min. Finally 10% B was maintained until 35 min. The solvent was used at a flow rate of 200 ul/min, the columns temperature

was kept constant at 25�C. The mass spectrometer operated in negative ion mode, settings of the HESI probe were as follows:

sheath gas flow rate at 30, auxiliary gas flow rate at 5 (at a temperature of 260�C). Spray voltage was set at 4.8 kV, temperature

of the capillary at 300�C and S-lens RF level at 50. A full scan (resolution of 140.000 and scan range of m/z 50-1050) was applied.

Mass spectrometry files were converted to the mzXML format using msConvert tool available from the proteowizard toolkit (Cham-

bers et al., 2012).

Genotyping
Panscan I and II subsets were genotyped at the Core Genotyping Facility of the National Cancer Institute on Illumina HumanHap550

and Illumina Human610-Quad arrays, respectively. DNA extraction, genotyping and genotype calling procedures were performed in

previous publications for Panscan I (Amundadottir et al., 2009) and Panscan II (Petersen et al., 2010). EPIC InterAct individuals were

genotyped on the Illumina 660W- Quad BeadChip array at the Wellcome Trust Sanger Institute (sharing a large proportion of SNPs

with the Illumina HumanHap550 array) (Langenberg et al., 2014). Genotyping details are given in Data Resource 7 on Mendeley Data

(https://doi.org/10.17632/wcb2xsg6pj.3).

QUANTIFICATION AND STATISTICAL ANALYSIS

MRI data analysis
MRI data were analyzed with ImageJ (National Institute of Health, Bethesda, USA). Volume was inferred through measurement of

the mean area at maximum radius, using the formula: 4/3*area*O(area/p). Predicted volume by MRI demonstrated a strong correla-

tion with tumor weights after necropsy (Figure S1M). Statistical analysis was performed in R (v3.4.3) (Harrell, 2019; R Core Team,

2013). Kaplan-Meier curves were fitted using the ‘‘npsurv’’ function from the R ‘‘rms’’ (v5.1-3.1) package (Harrell, 2019). Cumulative

incidence curves were visualized using the ‘‘survplot’’ function from the R ‘‘rms’’ (v5.1-3.1) package with the fun = function(x) {1 - x}

argument. Survival curves were plotted using the same ‘‘survplot’’ function without the extra argument. Differences between two or

more curves was performed using a log-rank test implemented in the ‘‘survdiff’’ function from the R ‘‘survival’’ (v2.44-1.1)

package (Therneau and Grambsch, 2000). The complete dataset and analysis code is provided in Data Resource 2 on Mendeley

Data (https://doi.org/10.17632/wcb2xsg6pj.3).

Cross-sectional analysis was performed with a linear mixed-effect model within each sex, including the cross level interaction

between time and diet (i.e., the effect of time is allowed to vary between diet groups). This model provides a fixed-effect estimate

for the interaction between change over time and diet. For the cross-sectional comparisons, we used the same model considering

as reference time 9 weeks for the 11 week time-point, 11 weeks for the 13 week time-point and so. These linear mixed-effect models

were fitted within each sex using the ‘‘lmer’’ function within ‘‘lme4’’ (Linear Mixed-Effects Models using ‘Eigen’ and S4) package in R.
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Nutritional landscape analysis was performed using ‘‘vegan’’ package in R, a two-dimensional coordination of all groups was first

constructed based on the diet compositions (based on weight/volume of each macronutrient and overall energy density) using prin-

ciple component analysis (PCA), and each nutrient component or mouse phenotype can be then plotted according to their averaged

trend of increment along the landscape (denoted by arrow) using the ‘‘envfit’’ function; on this landscape, positively correlated pa-

rameters have similar directions of increment, negatively correlated parameters have nearly opposite directions of increment, and

independent parameters are nearly orthogonal. The complete dataset and analysis code is provided in Data Resource 3 onMendeley

Data (https://doi.org/10.17632/wcb2xsg6pj.3).

Transcriptomics analysis
PCA was performed on auto-scaled data using the flashPCA package (v2.0) (Abraham et al., 2017). Differentially expressed genes

and their false discovery rate (FDR) corrected p values were identified by the ‘‘limma’’ R package (Ritchie et al., 2015). Fisher com-

bined probabilities for the comparisons of sugar free versus control and the sugar free versus high-glucose diets were calculated on

the two-sided non adjusted p values. Bar graphs, scatterplots and boxplots were produced using the ‘‘plotly’’ R package

(v4.8.0.9000) (Sievert, 2020). We used gene set enrichment analysis (GSEA) as implemented in the ‘‘clusterProfiler’’ R package

(v3.6.0) (Yu et al., 2012) and gene set variation analysis (GSVA) as implemented in the ‘‘GSVA’’ R package (v1.26.0) (Hänzelmann

et al., 2013). Gene set analysis was performed using gene sets from the Molecular Signatures Database (MSigDB v5.2 downloaded

from http://bioinf.wehi.edu.au/software/MSigDB/), a collection of expert annotated gene sets. GSEA and GSVA scores were calcu-

lated for sets with a minimum of 10 detected genes, all other parameters were default. Pathway mapping was performed using the

pathview package (version 1.18.2) using a color-scale range of ± 2^0.5849652 (corresponding to a fold change of ± 50%) and 10

bins.

Diet assessment
Diet components were assessed in EPIC at baseline using three previously validatedmethods as follows: (i) quantitative dietary ques-

tionnaires: Portions were estimated systematically for each participant from 260 food items in the Netherlands and Germany. France,

Spain and Italy used thismethod but based onmeals rather than individual food items. Centres in Spain and Ragusa (Italy) conducted

face-to-face dietary interview, whereas participants in France and northern Italy self-reported on their dietary habits; (ii) semiquan-

titative food frequency questionnaires: Standardized portions are used as opposed to estimating them individually. This semiquan-

titative method was used in Denmark, Norway, Naples in Italy and Umea in Sweden; (iii) combined dietary methods: Combines the

semiquantitative food frequency questionnaire method with a 7-day or 14-day record on hot meals. The combinedmethod was used

in the United Kingdom and Malmo (Sweden). We evaluated correlation between eight nutrient intakes. Pearson correlation coeffi-

cients and the assessed nutritional variables are shown in Data Resource 7 on Mendeley Data (https://doi.org/10.17632/

wcb2xsg6pj.3).

Multivariable Cox proportional hazards model
The Cox proportional hazards model, which allows us to estimate the effects of a variable in the presence of other explanatory vari-

ables included in the regression, was implemented to analyze time-dependent data (R package ‘survival‘ version 2.44-1.1). Control

subjects with no pancreatic cancer were right-censored at the time of last follow-up. The event analyzed was pancreatic cancer inci-

dence. Due to unavailability of the date of diagnosis and poor survival rates in pancreatic cancer (1,228 out of the 1,314 cases died

during the follow-up period) we used date of death or the end of the follow-up period for the 86 cases alive as event date. We tested

the effects of eight nutritional variables on pancreatic cancer incidence in 1,314 cases and 457,917 controls from EPIC with age at

recruitment, body mass index, sex and smoking status as explanatory variables in the model.

Genotyping quality control of human datasets
To assess the quality of genotyping and uncover sample handling issues we conducted quality control with PLINK v1.90. Details on

sample and variant QC are given on Data Resource 7 on Mendeley Data (https://doi.org/10.17632/wcb2xsg6pj.3). To account for

possible substructures within the study population we conducted multidimensional scaling (MDS) to create continuous axes of ge-

netic variation (Figure S8H). The resulting four principal components from the MDS analysis were used as covariates in the associ-

ation analysis to adjust for ancestry effects.

Genotype imputation
The filtered genotype array data was imputed to the Haplotype Reference Consortium panel using the free Sanger Imputation Service

provided by the Wellcome Sanger Institute (Loh et al., 2016). More details on post-imputation filtering are given on Data Resource 7

on Mendeley Data (https://doi.org/10.17632/wcb2xsg6pj.3).

Gene x environment interaction analysis
GxE interactions were tested between eight nutritional variables and allelic effects of DNA variants in EPIC by modeling the logarithm

of the odds of the pancreatic cancer status defined as follows: log(P(C)/1–P(C)) = b0+bGG+bEE+bGEGE+ε, where C is the cancer sta-

tus, G is the genotype and E is the environmental exposure (nutrient intake). The interaction odds ratio [ORGE = exp(bGE)] measures
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the departure from the multiplicative effects of the corresponding main effects and can be interpreted as the increase in pancreatic

cancer risk with one gram per day increase in the nutrient. The GxE interaction tests were conducted using the freely available soft-

ware QUICKTEST v0.95 (Kutalik et al., 2011).

Untargeted metabolomics analysis
For untargeted metabolomics, peaks were extracted using XCMS (Smith et al., 2006) with pre-filter settings of a minimum of 10

consecutive scans with a minimum intensity of 10,000. Peaks with a minimum width of 18 s and a maximum width of 36 s were ex-

tracted over a retention time range of 240-1500 s with a signal to noise ratio of 10, a baseline noise level of 10,000 and aminimumm/z

difference of - 0.0005. The resolution was set at 3 ppm. To improve batch integration, we performed an additional post-processing

step to integrate peaks in individual samples that were initially not detected. Finally, we used a metabolite library of 186 authentic

chemical standards and their fragmentation spectrum to match against chromatographic peaks in each sample by mass, retention

time and fragmentation spectrum. The full dataset is given in Data Resource 5 on Mendeley Data (https://doi.org/10.17632/

wcb2xsg6pj.3).

The data matrix with metabolite abundances was log2 transformed, metabolites or features detected in less than 10% of samples

were removed entirely. Zero values of features present in more than 10%of samples weremean imputed. Mass spectrometry drift for

each feature was assessed using pooled quality control samples and corrected using local linear regression. PCA was performed on

auto-scaled data using the flashPCA package (v2.0). Bar graphs, scatterplots and boxplots were produced using the ‘‘plotly’’ R pack-

age (v4.8.0.9000).

Statistical analysis
In mice, age at tumor onset and tumor volume increase data are presented as the median and interquartile range given the ranked

data type (distributions tested with Shapiro Wilk test). The exact value of n representing the number of mice within each group tested

can be found in the figure legend. Statistical significance for these traits was tested using the Mann-Whitney U test for pairwise

comparisons and the Kruskal-Wallis test with Dunn’s post hoc for multiple group comparisons. Differences between two or more

pancreatic cancer survival curves was performed using a log-rank test implemented in the ‘‘survdiff’’ function from the R ‘‘survival’’

(v2.44-1.1) package (Therneau and Grambsch, 2000). Statistical analysis for the mouse data was performed in R (v3.4.3) (Harrell,

2019; R Core Team, 2013). All other statistical tests used, n numbers and P values are displayed in the appropriate tables, figures

and legends. In humans, the Cox multivariate analysis was performed in R (v.3.6.1). P values < 0.05 were considered statistically sig-

nificant for all analyses. In the gene-environment interaction analysis, suggestive genome-wide associations were considered at p%

10�5.
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