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SUMMARY

Cell-to-cell transcriptional variability in otherwise
homogeneous cell populations plays an important
role in tissue function and development. Single-
cell RNA sequencing can characterize this variability
in a transcriptome-wide manner. However, technical
variation and the confounding between variability
and mean expression estimates hinder meaningful
comparison of expression variability between cell
populations. To address this problem, we introduce
an analysis approach that extends the BASiCS sta-
tistical framework to derive a residual measure of
variability that is not confounded by mean expres-
sion. This includes a robust procedure for quanti-
fying technical noise in experiments where technical
spike-in molecules are not available. We illustrate
how our method provides biological insight into
the dynamics of cell-to-cell expression variability,
highlighting a synchronization of biosynthetic ma-
chinery components in immune cells upon activa-
tion. In contrast to the uniform up-regulation of
the biosynthetic machinery, CD4+ T cells show het-
erogeneous up-regulation of immune-related and
lineage-defining genes during activation and differ-
entiation.

INTRODUCTION

Heterogeneity in gene expression within a population of single

cells can arise from a variety of factors. Structural differences

in gene expression within a cell population can reflect the

presence of sub-populations of functionally different cell types

(Zeisel et al., 2015; Paul et al., 2015). Alternatively, in a seemingly
284 Cell Systems 7, 284–294, September 26, 2018 ª 2018 The Autho
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homogeneous population of cells, the so-called unstructured

expression heterogeneity can be linked to intrinsic or extrinsic

noise (Elowitz et al., 2002). Changes in physiological cell states

(such as cell cycle, metabolism, abundance of transcriptional

and translational machinery, and growth rate) represent extrinsic

noise, which has been found to influence expression variability

within cell populations (Keren et al., 2015; Buettner et al., 2015;

Zeng et al., 2017). Intrinsic noise can be linked to epigenetic

diversity (Smallwood et al., 2014), chromatin rearrangements

(Buenrostro et al., 2015), as well as the genomic context of single

genes, such as the presence of TATA-box motifs and the

abundance of nucleosomes around the transcriptional start

site (Hornung et al., 2012).

Single-cell RNA sequencing (scRNA-seq) generates tran-

scriptional profiles of single cells, allowing the study of cell-

to-cell heterogeneity on a transcriptome-wide (Gr€un et al.,

2014) and single gene level (Goolam et al., 2016). Conse-

quently, this technique can be used to study unstructured

cell-to-cell variation in gene expression within and between

homogeneous cell populations (i.e., where no distinct cell

sub-types are present). Increasing evidence suggests that

this heterogeneity plays an important role in normal develop-

ment (Chang et al., 2008) and that control of expression noise

is important for tissue function (Bahar Halpern et al., 2015). For

instance, molecular noise was shown to increase before cells

commit to lineages during differentiation (Mojtahedi et al.,

2016), while the opposite is observed once an irreversible cell

state is reached (Richard et al., 2016). A similar pattern

occurs during gastrulation, where expression noise is high in

the uncommitted inner cell mass compared to the committed

epiblast and where an increase in heterogeneity is observed

when cells exit the pluripotent state and form the uncommitted

epiblast (Mohammed et al., 2017).

Motivated by scRNA-seq, recent studies have extended

traditional differential expression analyses to explore more gen-

eral patterns that characterize differences between cell popula-

tions or experimental conditions (e.g., Korthauer et al. [2016]).
r(s). Published by Elsevier Inc.
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In particular, the Bayesian analysis of single-cell sequencing data

(BASiCS) framework (Vallejos et al., 2015, 2016) introduced a

probabilistic tool to assess differences in cell-to-cell heterogeneity

between two or more cell populations. This feature has led to, for

example, insights into the context of immune activation and aging

(Martinez-Jimenez et al., 2017). To meaningfully assess changes

in biological variability across the entire transcriptome, two main

confounding effects must be taken into account: differences

due to artefactual technical noise and differential variability be-

tween populations that is driven by changes in mean expression.

The latter arises because biological noise is negatively correlated

with protein abundance (Bar-Even et al., 2006; Newman et al.,

2006; Taniguchi et al., 2010) or mean RNA expression (Brennecke

et al., 2013; Antolovi�c et al., 2017). To address these two con-

founding effects, BASiCS separates biological noise from

technical variability by borrowing information from synthetic

RNA spike-in molecules. Additionally, to acknowledge the vari-

ance-mean relationship, it restricts differential variability testing

to those genes with equal mean expression across populations.

This article extends the statistical model implemented in

BASiCS by introducing a more general approach to account

for the aforementioned confounding effects. First, we derive a

residual measure of cell-to-cell transcriptional variability that is

not confounded by mean expression. This is used to define a

probabilistic rule to robustly highlight changes in variability,

even for differentially expressed genes. Unlike previous related

methods (e.g., Kolodziejczyk et al. [2015]), our approach directly

performs gene-specific statistical testing between two condi-

tions using a readily available measure of uncertainty. Second,

by exploiting concepts from measurement error models, our

method is extended to address experimental designs where

spike-in sequences are not available. This is particularly critical

due to the increasing popularity of droplet-based technologies.

Using our approach, we identify a synchronization of biosyn-

thetic machinery components in CD4+ T cells upon early immune

activation as well as an increased variability in the expression of

genes related to CD4+ T cell immunological function. Further-

more, we detect evidence of early cell fate commitment of

CD4+ T cells during malaria infection characterized by a

decrease in Tbx21 expression heterogeneity and a rapid

collapse of global transcriptional variability after infection. These

results highlight biological insights into T cell activation and

differentiation that are only revealed by jointly studying changes

in mean expression and variability.

RESULTS

Addressing the Mean Confounding Effect for
Differential Variability Testing
Unlike bulk RNA-seq, scRNA-seq provides information about

cell-to-cell expression heterogeneity within a population of cells.

Previous studies have used a variety of measures to quantify this

heterogeneity. Among others, this includes the coefficient of

variation (CV) (Brennecke et al., 2013) and entropy measures

(Richard et al., 2016). As in Vallejos et al. (2015, 2016), we focus

on biological over-dispersion as a proxy for transcriptional

heterogeneity. This is defined by the excess of variability that is

observed with respect to what would be predicted by Poisson

sampling noise after accounting for technical variation.
The aforementioned measures of variability can be used

to identify genes whose transcriptional heterogeneity differs

between groups of cells (defined by experimental conditions or

cell types). However, the strong relationship that is typically

observed between variability and mean estimates (e.g., Bren-

necke et al. [2013]) can hinder the interpretation of these results.

A simple solution to avoid this confounding is to restrict the

assessment of differential variability to those genes with equal

mean expression across populations (see Figure 1A). However,

this is sub-optimal, particularly when a large number of genes

are differentially expressed between the populations. For

example, reactive genes that change in mean expression upon

changing conditions (e.g., transcription factors) are excluded

from differential variability testing. An alternative approach is to

directly adjust variability measures to remove this confounding.

For example, Kolodziejczyk et al. (2015) computed the empirical

distance between the squared CV to a rolling median along

expression levels—referred to as the DM method.

In line with this idea, our method extends the statistical model

implemented in BASiCS (Vallejos et al., 2015, 2016). We define a

measure of ‘‘residual over-dispersion’’—which is not correlated

with mean expression—to meaningfully assess changes in

transcriptional heterogeneity when genes exhibit shifts in

mean expression (see Figure 1B). More concretely, we infer a

regression trend between over-dispersion (di) and gene-specific

mean parameters (mi), by introducing a joint informative prior to

capture the dependence between these parameters (see STAR

Methods). A latent gene-specific residual over-dispersion

parameter ei describes departures from this trend (see Fig-

ure 1C). Positive values of ei indicate that a gene exhibits

more variation than expected relative to genes with similar

expression levels. Similarly, negative values of ei suggest less

variation than expected, and, as shown in Figure 1D, these

residual over-dispersion parameters are not confounded by

mean expression.

Our hierarchical Bayes approach infers full posterior distribu-

tions for the gene-specific latent residual over-dispersion

parameters ei. As a result, we can directly use a probabilistic

approach to identify genes with large absolute differences in

residual over-dispersion between two groups of cells (see Fig-

ure 1E and STAR Methods). The performance of this differential

variability test was validated using simulated data (see Figure S1

and STAR Methods). In contrast, mean-corrected point

estimates for residual noise parameters (such as those obtained

by the DM method) cannot be directly used to perform gene-

specific statistical testing between two conditions, as no mea-

sure of the uncertainty in the estimate is readily available.

The Informative Prior Stabilizes Parameter Estimation
Our joint prior formulation has introduced a non-linear regression

to capture the overall trend between gene-specific over-

dispersion parameters di and mean expression parameters mi
(see STAR Methods). Thus, we also refer to the extended model

induced by this prior as the ‘‘regression’’ BASiCS model.

Accordingly, themodel induced by the original independent prior

specification (Vallejos et al., 2016) is referred to as the ‘‘non-

regression’’ BASiCS model.

To study the performance of the regression BASiCSmodel, we

applied it to a variety of scRNA-seq datasets. Each dataset is
Cell Systems 7, 284–294, September 26, 2018 285



Figure 1. Avoiding the Mean Confounding

Effect When Quantifying Expression Vari-

ability in scRNA-Seq Data

(A and B) Illustration of changes in expression

variability for a single gene between two cell pop-

ulations without (A) and with (B) changes in mean

expression.

(C and D) Our extended BASiCS model infers a

regression trend between gene-specific estimates

of over-dispersion parameters di and mean

expression mi. Residual over-dispersion parame-

ters ei are defined by departures from the regres-

sion trend. For a single gene, this is illustrated

using a red arrow. The color code within the

scatterplots is used to represent areas with high

(yellow and red) and low (blue) concentration of

genes. For illustration purposes, the data intro-

duced by Antolovi�c et al. (2017) have been used

(see STAR Methods).

(C) Gene-specific estimates of over-dispersion

parameters di were plotted against mean expres-

sion parameters mi. The red line shows the

regression trend. This illustrates the typical con-

founding effect that is observed between vari-

ability andmean expressionmeasures. Genes that

are not detected in at least 2 cells are indicated by

purple points.

(D) Gene-specific estimates of residual over-

dispersion parameters ei were plotted against

mean expression parameters mi. This illustrates the

lack of correlation between these parameters.

(E) Illustration of how posterior uncertainty is used

to highlight changes in residual over-dispersion.

Two example genes with (upper) and without

(lower) differential residual over-dispersion are

shown. Left inset illustrates the posterior density

associated with residual over-dispersion parame-

ters ei for a gene in two groups of cells (group A,

light blue; group B, dark blue). The colored area in

the right inset represents the posterior probability

of observing an absolute difference
��eAi � eBi

�� that
is larger than the minimum tolerance threshold j0

(see STAR Methods).
unique in its composition, covering a range of different cell types

and experimental protocols (see STAR Methods and Table S1).

Qualitatively, we observe that the inferred regression trend varies

substantially across different datasets (Figures 2 and S2), justi-

fying the choice of a flexible semi-parametric approach (see

STAR Methods). Moreover, as expected, we observe that resid-

ual over-dispersion parameters ei are not confounded by mean

expression nor by the percentage of zero counts per gene.

The regression BASiCS model introduces a joint prior specifi-

cation for (mi, di)
0, shrinking the posterior estimates for mi and di

toward the regression trend (this is in line with the shrinkage

observed in Love et al. [2014]). The strength of this shrinkage is

dataset specific, being more prominent in sparser datasets

with a higher frequency of zero counts (see Figure 2A) and for

lowly expressed genes where measurement error is greatest.
286 Cell Systems 7, 284–294, September 26, 2018
Subsequently, we askedwhether or not

the shrinkage introduced by the regres-

sion BASiCS model improves posterior

inference. To assess this, we compared
estimates for gene-specific parameters across (1) different

sample sizes and (2) different gene expression levels. More

concretely, we used a large dataset containing 939 CA1 pyrami-

dal neurons (Zeisel et al., 2015) to artificially generate smaller da-

tasets by randomly sub-sampling 50–500 cells. For each sample

size, parameter estimates were then obtained using both the

regression and non-regression BASiCS models. The distribution

of these estimates is summarized in Figure 3.

First, we observe that both the regression and non-regression

BASiCS models led to comparable and largely stable mean

expression estimates across different sample sizes and expres-

sion levels (see Figure 3A). Second, in line with the results in Fig-

ure 2, the main differences between the methods arise when

estimating the over-dispersion parameters di (see Figures 3B

and S3A–S3C). In particular, we observe that the non-regression



Figure 2. Parameter Estimation Using a Variety of scRNA-Seq Datasets

Model parameters were estimated using the regression and non-regression BASiCS models on (A) naive CD4+ T cells (Martinez-Jimenez et al., 2017) and

(B)Dictyostelium cells prior to differentiation (day 0) (Antolovi�c et al., 2017). These datasets were selected to highlight two situations with different levels of sparsity

(i.e., the proportion of zero counts; see fourth column). More details about these datasets are provided in STARMethods. The color code within the scatterplots is

used to represent areas with high (yellow and red) and low (blue) concentration of genes.

First column: gene-specific over-dispersion di versus mean expression mi as estimated by the non-regression BASiCS model.

Second column: gene-specific over-dispersion di versus mean expression mi as estimated by the regression BASiCS model. The red line indicates the estimated

regression trend. Purple dots indicate genes detected (i.e., with at least one count) in fewer than 2 cells.

Third column: gene-specific residual over-dispersion ei versus mean expression mi as estimated by the regression BASiCS model.

Fourth column: gene-specific posterior estimates for residual over-dispersion ei parameters versus percentage of zero counts for each gene.

See also Figure S2.
BASiCS model appears to underestimate di for lowly expressed

genes when the sample size is small (with respect to the param-

eter estimates obtained based on the full dataset of 939 cells). In

contrast, the shrinkage introduced by our regression BASiCS

model aids parameter estimation, leading to robust estimates

even for the smallest sample size. This is particularly important

for rare cell populations where large sample sizes are difficult

to obtain. A similar effect is observed for genes with medium

and high expression levels, where the non-regression BASiCS

model appears to overestimate di. We also observe that esti-

mates of residual over-dispersion parameters ei are stable

across sample sizes and expression levels. These findings are

replicated across multiple sub-sampling experiments (see Fig-

ures S3D–S3F).

As an external validation, we compared our posterior esti-

mates of gene-specific model parameters obtained from

scRNA-seq data to empirical estimates from matched single

molecule fluorescence in situ hybridization (smFISH) data of

mouse embryonic stem cells grown in 2i and serum media

(see STAR Methods and Gr€un et al. [2014]). First, posterior

estimates of mean-expression parameters mi exhibit high

correlation to smFISH mean transcript counts (see Fig-

ure S3G). Second, we also observe a strong correlation be-

tween posterior estimates for over-dispersion parameters di

and the empirical CV2 values obtained from smFISH data

(see Figure S3H). Finally, a similar behavior is observed
when comparing posterior estimates of residual over-disper-

sion parameters ei to a residual CV2 (see Figure S3I and

STAR Methods).

Inferring Technical Variability without Spike-In Genes
Another critical aspect to take into account when inferring tran-

scriptional variability based on scRNA-seq datasets is technical

variation (Brennecke et al., 2013). BASiCS achieves this through

a vertical data integration approach, exploiting a set of synthetic

RNA spike-in molecules (e.g., the set of 92 ERCC molecules

developed by Jiang et al. [2011]) as a gold standard to aid

normalization and to quantify technical artefacts (see Figure 4A).

However, while the addition of spike-in genes prior to

sequencing is theoretically appealing (Lun et al., 2017), several

practical limitations can preclude their utility in practice (Vallejos

et al., 2017). Furthermore, the use of spike-in genes is not

compatible with (increasingly popular) droplet-based technolo-

gies, which have massively increased the throughput of

scRNA-seq over the last few years (Svensson et al., 2018).

Consequently, to ensure the broad applicability of our

method, we extend BASiCS (both the regression and non-

regression models) to handle datasets without spike-in genes.

For this purpose, we exploit principles of measurement error

models where—in the absence of gold standard features—

technical variation is quantified through replication (Carroll,

1998). As described in Figure 4B, this horizontal data
Cell Systems 7, 284–294, September 26, 2018 287



Figure 3. Estimation of Gene-Specific Model Parameters for Varying Sample Sizes

The regression (orange) and non-regression (blue) BASiCS models were used to estimate gene-specific model parameters for lowly (lower insets), medium (mid

insets), and highly (upper insets) expressed genes across populations with varying numbers of cells. These were generated by randomly sub-sampling cells from

a population of 939 CA1 pyramidal neurons (Zeisel et al., 2015). For more details, see STAR Methods. Extended results based on multiple downsampling

experiments are displayed in Figures S3D–S3F.

(A–C) For a single sub-sampling experiment, boxplots summarize the distribution of gene-specific estimates for (A) mean expression parameters mi (log-scale),

(B) over-dispersion parameters di (log-scale), and (C) residual over-dispersion parameters ei.

See also Figure S3.
integration approach is based on experimental designs where

cells from a population are randomly allocated to multiple

independent experimental replicates (here referred to as

‘‘batches’’). In such an experimental design, the no-spikes im-

plementation of BASiCS assumes that biological effects are

shared across batches and that technical variation will be re-

flected by spurious differences. As shown in Figures 4C and

4D, posterior inference under the no-spikes BASiCS model

closely matches the original implementation for datasets where

spike-ins and batches are available. Technical details about the

no-spikes implementation of BASiCS are discussed in STAR

Methods and Figure S4.

Expression Variability Dynamics during Immune
Activation and Differentiation
Here, we illustrate how our method assesses changes in expres-

sion variability using CD4+ T cells as a model system. For all da-

tasets, pre-processing steps are described in STAR Methods.

Testing Variability Changes in Immune Response Gene
Expression
To identify gene expression changes during early T cell activa-

tion, we compared CD4+ T cells before (naive) and after (active)

3 hr of stimulation (Martinez-Jimenez et al., 2017). When using

the non-regression BASiCS model, our differential over-disper-

sion test avoided the confounding with mean expression by

solely focusing on genes with no changes in mean expression.

This represents only a small fraction out of the full set of ex-

pressed genes. In contrast, testing changes in variability using
288 Cell Systems 7, 284–294, September 26, 2018
residual over-dispersion measures allows testing across all

genes, including the large set of genes that are up-regulated

upon immune activation (see Figures S5A and S5B and STAR

Methods). The latter include immune-response genes and

critical drivers for CD4+ T cell functionality.

Our model classifies genes into four categories based on their

expression dynamics: down-regulated upon activation with

(1) lower and (2) higher variability; and up-regulated with (3) lower

and (4) higher variability (Figure 5A; STAR Methods; Table S2).

Genes with up-regulated expression upon activation and

decreased expression variability encode components of the

splicing machinery (e.g., Sf3a3, Plrg1), RNA polymerase

subunits (e.g., Polr2l, Polr1d) as well as translation machinery

components (e.g., Ncl, Naf1) (see Figure 5B). These biosynthetic

processes help naive T cells to rapidly enter a program of prolif-

eration and effector molecule synthesis (Tan et al., 2017; Araki

et al., 2017). Therefore, rapid, uniform up-regulation of these

transcripts would assist such processes. This observation also

confirms previous findings that the translational machinery is

tightly regulated during early immune activation (Martinez-Jime-

nez et al., 2017).

In contrast, genes with up-regulated expression and

increased expression variability (see Figure 5C) include the

death-inducing and inhibitory transmembrane ligands Fas ligand

(Fasl) and PD-L1 (Cd274), the regulatory transcription factor

Smad3 (Smad3), and the T cell receptor (TCR)-induced

transcription factor, Oct2 (Pou2f2). Additionally, we detect a

heterogeneous up-regulation in the mRNA expression of the

autocrine and paracrine growth factor IL-2 (Il2) upon immune



Figure 4. The Spikes and No-Spikes Imple-

mentations of BASiCS

(A) Diagram representing the spikes implementation

of BASiCS (Vallejos et al., 2015, 2016). This uses a

vertical data integration approach to borrow infor-

mation from gold-standard spike-in genes to aid

normalization and to quantify technical variability.

(B) Diagram representing the no-spikes im-

plementation of BASiCS. This uses a horizontal

data integration approach to borrow information

across multiple batches of sequenced cells (not

confounded by the biological effect of interest) to

quantify technical variability. More details about

this implementation are discussed in STAR

Methods and Figure S4.

(C and D) Comparison between the vertical and

horizontal implementations of BASiCS using a

dataset of mouse embryonic stem cells grown in 2i

medium (see STARMethods and Gr€un et al., 2014).

Dashed horizontal lines located at ± log2(1.5)

indicate the default minimum tolerance log2-fold

change threshold used for differential testing.

(C) Comparison in terms of posterior estimates for

mean expression parameters mi across all genes.

(D) Comparison in terms of posterior estimates for

over-dispersion parameters di across all genes.

See also Figure S4.
activation. This is in line with previous reports of binary IL-2

expression within a population of activated T cells, which has

been suggested to be necessary for a scalable antigen response

(Fuhrmann et al., 2016). Heterogeneity in expression of these

genes suggests that despite the uniform up-regulation of

biosynthetic machinery, T cells in this early activation state

represent a mixed population with varying degrees of activation

and/or regulatory potential.

We observe that for some genes (e.g., Plrg1), changes in

variability are driven by a small number of outlier cells with high

expression. The interpretation of these results is not trivial as it

could reflect very subtle sub-structure or genuine changes in

variability. To explore this, we performed the following synthetic

experiment. We artificially created a mixed population of cells by

combining 5 activated CD4+ T cells with a population of 93 naive

CD4+ T cells (see STAR Methods). Subsequently, we performed

a differential testing (mean and residual over-dispersion)

between this mixed population and a pure population of 93 naive

CD4+ T cells. As expected, this analysis shows an overall in-

crease in variability in themixed population. For example, among

the genes that exhibit higher mean expression and higher resid-
Cell Sys
ual over-dispersion in the mixed popula-

tion, we found Il2—which is up-regulated

upon CD4+ T cell activation (see Fig-

ure S5C). Moreover, we observe that the

genes in this category are enriched for

those that are only expressed in the 5 acti-

vated CD4+ T cells (see Figure S5D). This

result suggests that differential variability

testing can potentially uncover markers

for heterogeneous cell states or cell types

and can therefore provide important
biological insights. However, changes in residual over-disper-

sion that are driven by outliers can also reflect unwanted

contamination (e.g., mixed cell types), hence careful data

filtering and clustering analysis should be performed prior to

differential variability testing.

In summary, our approach allows us to extend the finding by

Martinez-Jimenez et al. (2017), dissecting immune-response

genes into two functional sets: (1) homogeneous up-regulation

of biosynthetic machinery components and (2) heterogeneous

up-regulation of several immunoregulatory genes.

Expression Dynamics during In Vivo CD4+ T Cell
Differentiation
In contrast to the quick transcriptional switch that occurs within

hours of naive T cell activation, transcriptional changes during

cellular differentiation processes aremore subtle andwere found

to be coupled with changes in variability prior to cell fate deci-

sions (Richard et al., 2016; Mojtahedi et al., 2016). Here, we

apply our method to study changes in expression variability dur-

ing CD4+ T cell differentiation after malaria infection using the

dataset introduced by Lönnberg et al. (2017). In particular, we
tems 7, 284–294, September 26, 2018 289



Figure 5. Changes in Expression Patterns during Early Immune Acti-

vation in CD4+ T Cells

Differential testing (mean and residual over-dispersion) was performed be-

tween naive and activated murine CD4+ T cells. This analysis uses a minimum

tolerance threshold of t0 = 1 for changes in mean expression and a minimum

tolerance threshold of j0 = 0.41 for differential residual over-dispersion testing

(expected false discovery rate is fixed at 10%; see STAR Methods).

(A) For each gene, the difference in residual over-dispersion estimates (Active

versus Naive) is plotted versus the log2-fold change inmean expression (Active

versus Naive). Genes with statistically significant changes in mean expression

and variability are colored based on their regulation (up- or down-regulated,

higher or lower variability).

(B and C) Denoised expression counts across the naive (purple) and active

(green) CD4+ T cell population are visualized for representative genes that

(B) increase in mean expression and decrease in expression variability and

(C) increase in mean expression as well as expression variability upon immune

activation. Each dot represents a single cell.

See also Figure S5.
focus on samples collected 2, 4, and 7 days post malaria infec-

tion, for which more than 50 cells are available.

To study global changes in over-dispersion along the differen-

tiation time course, we first compared posterior estimates for the

gene-specific parameter di, focusing on genes for which mean

expression does not change (see Figure 6A and STARMethods).

This analysis suggests that the expression of these genes is

most tightly regulated at day 4, when cells are in a highly prolif-

erative state. Moreover, between days 4 and 7, the cell

population becomes more heterogeneous. This is in line with

the emergence of differentiated T helper (Th) 1 and Tfh cells

that was observed by Lönnberg et al. (2017).

We next exploited the residual over-dispersion parameters to

identify changes in variability (irrespective of changes in mean

expression) between consecutive time points (see STAR
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Methods). For example, separating these genes by whether their

variability increases or decreases between time points revealed

four different patterns (see Figure 6B). These include genes

whose variability systematically increases (or decreases) as

well as patterns where variability is highest (or lowest) at day 4.

In particular, differential variability analysis between days

2 and 4 revealed changes in expression variability for a set of

immune-related genes (see Figure 6C). For example, expression

ofCxcr5, which encodes the chemokine receptor that directs Tfh

cells to the B cell follicles (Crotty, 2014), strongly increases in

variability on day 4. This finding agrees with results from Lönn-

berg et al. (2017), where Tfh and Th1 differentiation was

observed to be transcriptionally detectable at day 4 within a

subset of activated cells. A similar behavior was observed for

Tyk2 and Tigit. The latter encodes a receptor that is expressed

by a subset of Tfh cells and was found to promote Tfh function

(Godefroy et al., 2015). In contrast, we observed a decrease in

variability between days 2 and 4 for Ikzf4 (Treg-associated

gene), Ly6c1 (expressed by effector T cells), and Tbx21 (encod-

ing the Th1 lineage-defining transcription factor Tbet). Subse-

quently, we summarized the results of our differential testing

between days 2 and 4 as well as days 4 and 7, focusing on genes

that were previously detected to be Th1- or Tfh-lineage associ-

ated (Lönnberg et al., 2017). We detected a continuous increase

in expression of Th1-associated genes but not Tfh-associated

genes (see Figure S6A and STAR Methods), with the majority

of changes in variability for these genes occurring between

days 2 and 4.

We next examined immune-related genes (Il2ra, Tbx21, Il2rb,

Cxcr5, Selplg, Id2, Ifng, Icos, Ifngr1) that were previously

described as showing differences in their peak expression over

the pseudotime course of differentiation (Figure S6B; STAR

Methods; Lönnberg et al., 2017). From this list, the lineage-asso-

ciated genes Tbx21 and Cxcr5 are up-regulated between days

2 and 4. However, these genes exhibit opposite behaviors in

terms of variability: Cxcr5 increases and Tbx21 decreases in

variability between days 2 and 4 (see Figure 6D). The fact that

variability of Tbx21 (Tbet) expression was highest on day 2 sug-

gests that Tbet is up-regulated very early in differentiation, as

seen in Lönnberg et al. (2017) and similar to in vitro Th1 induction

(Szabo et al., 2000). Moreover, this suggests that Th1 fate deci-

sions (for at least a subset of cells) may bemade even earlier than

the differentiation bifurcation point identified on day 4 by the

original study (Lönnberg et al., 2017).

DISCUSSION

In recent years, the importance of modulating cell-to-cell tran-

scriptional variation within cell populations for tissue function

maintenance and development has become apparent (Bahar

Halpern et al., 2015; Mojtahedi et al., 2016; Goolam et al.,

2016). Here, we present a statistical approach to robustly test

changes in expression variability between cell populations using

scRNA-seq data. Our method uses a hierarchical Bayes formu-

lation to extend the BASiCS framework by addressing (increas-

ingly popular) experimental protocols where spike-in sequences

are not available and by incorporating an additional set of resid-

ual over-dispersion parameters ei that are not confounded by

changes in mean expression. Together, these extensions ensure



Figure 6. Dynamics of Expression Variability

throughout CD4+ T Cell Differentiation

Analysis was performed on CD4+ T cells assayed 2,

4, and 7 days after Plasmodium infection. Changes

in residual over-dispersion were tested using a

minimum tolerance threshold of j0 = 0.41

(expected false discovery rate is fixed at 10%; see

STAR Methods)

(A) Distribution of posterior estimates of over-

dispersion parameters di for genes that exhibit no

changes in mean expression across the differenti-

ation time course. Changes in mean expression

were tested using a minimum tolerance threshold

of t 0 = 0 (expected false discovery rate is fixed at

10%).

(B) Posterior estimates for residual over-dispersion

parameters ei, focusing on genes with statistically

significant changes in expression variability be-

tween time points. Gene set size is indicated for

each plot.

(C and D) Denoised expression counts across cell

populations at days 2 (yellow) and 4 (red) post

infection are visualized for representative genes

that (C) increase or (D) decrease in variability during

differentiation. Each dot represents a single cell.

(E) Tbx21 (blue) and Cxcr5 (red) measured at days

2, 4, and 7 post infection. Posterior estimates for

residual over-dispersion parameters ei are plotted

against posterior estimates for mean expression

parameters mi. Statistically significant changes

in mean expression (DE, minimum tolerance

threshold of t0 = 1) and variability (DV, minimum

tolerance threshold of j0 = 0:41) are indicated for

each comparison (expected false discovery rate is

fixed at 10%).

See also Figure S6.
a broader applicability of the BASiCS software and allow statis-

tical testing of changes in variability that are not confounded by

technical noise or mean expression.

In general, stable gene-specific variability estimates ideally

require a large and deeply sequenced dataset containing a

homogeneous cell population (the use of unique molecular

identifiers for quantifying transcript counts can also improve

variability estimation; see Gr€un et al. [2014]). However, we

observe that the regression BASiCS model leads to a more

stable inference that requires fewer cells to accurately estimate

gene-specific summaries, particularly for lowly expressed

genes. Despite this, careful considerations should be taken in

extreme scenarios where the number of cells is small and/or

the data are highly sparse (e.g., droplet-based approaches).

These features of the data not only affect parameter estimation

but also downstream differential testing. For sparse datasets

with low numbers of cells, we recommend the use of a stringent

minimum tolerance threshold and/or calibrating the test to a low

expected false discovery rate (e.g., 1%) to avoid detecting

spurious signals. Moreover, if possible, an internal calibration

can be performed to find a reasonable minimum tolerance

threshold (e.g., by randomly permuting cells between two

groups to calibrate the null distribution of the differences

between populations).

Our method allows characterization of the extent and nature of

variable gene expression in CD4+ T cell activation and differenti-
ation. First, we observe that during acute activation of naive

T cells, genes of the biosynthetic machinery are homogeneously

up-regulated, while specific immune-related genes become

more heterogeneously up-regulated. In particular, increased

variability in expression of the apoptosis-inducing Fas ligand

(Strasser et al., 2009) and the inhibitory ligand PD-L1 (Chikuma,

2016) suggests a mechanism by which newly activated cells

might suppress re-activation of effector cells, thereby dynami-

cally modulating the population response to activation. Likewise,

more variable expression of Smad3, which translates inhibitory

TGFb signals into transcriptional changes (Delisle et al., 2013),

may indicate increased diversity in cellular responses to this

signal. Increased variability in Pou2f2 (Oct2) expression after

activation suggests heterogeneous activities of the NF-kB and/

or NFAT signaling cascades that control its expression (Mueller

et al., 2013). Moreover, we detect up-regulated and more vari-

able Il2 expression, suggesting heterogeneous IL-2 protein

expression, which is known to enable T cell population re-

sponses (Fuhrmann et al., 2016).

Finally, we studied changes in gene expression variability

during CD4+ T cell differentiation toward a Th1 and Tfh cell

state over a 7-day time course after in-vivo malaria infection

(Lönnberg et al., 2017). Our analysis provides several insights

into this differentiation system. First, we observe a tighter

regulation in gene expression among genes that do not change

in mean expression during differentiation at day 4, when
Cell Systems 7, 284–294, September 26, 2018 291



divergence of Th1 and Tfh differentiation was previously iden-

tified (Lönnberg et al., 2017). This decrease in variability on

day 4 is potentially due to the induction of a strong pan-lineage

proliferation program. However, we observe that not all genes

follow this trend and uncover four different patterns of vari-

ability changes. Second, we observe that several Tfh and

Th1 lineage-associated genes change in expression variability

between days 2 and 4. For example, we noted a decrease in

variability for one key Th1 regulator, Tbx21 (encoding Tbet),

which suggests that a subset of cells may have already

committed to the Th1 lineage at day 2. Three additional Th1

lineage-associated genes also followed this trend (Ahnak,

Ctsd, Tmem154). These data suggest that differentiation fate

decisions may arise as early as day 2 in subpopulations within

this system, resulting in high gene expression variability. Such

an effect is in accordance with the early commitment to

effector T cell fates that was previously observed during viral

infection (Choi et al., 2011). As these results illustrate, diversity

in differentiation state within a population of T cells can drive

our differential variability results. To further dissect these re-

sults, subsequent analyses such as the pseudotime inference

used in Lönnberg et al. (2017) could be used to characterize

a continuous differentiation process.

In sum, our model provides a robust tool for understanding the

role of heterogeneity in gene expression during cell fate deci-

sions. With the increasing use of scRNA-seq to study this phe-

nomenon, ours and other related tools will become increasingly

important.
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METHOD DETAILS

The BASiCS Framework
The proposed statistical model builds upon BASiCS (Vallejos et al., 2015, 2016)— an integrated Bayesian framework that infers tech-

nical noise in scRNA-seq datasets and simultaneously performs data normalisation as well as selected supervised downstream

analyses.

Let Xij be a random variable representing the expression count of gene i (˛{1, ., q}) in cell j (˛{1, ., n}). To control for technical

noise, we employ reads from synthetic RNA spike-ins (e.g. those introduced by Jiang et al., 2011). Without loss of generality, we

assume the first q0 genes to be biological followed by the q � q0 spike-in genes. As in the original BASiCS method introduced by

Vallejos et al. (2015), we assume a Poisson hierarchical formulation:

Xij

��mi;fj; nj; rij�ind
�
Poisson

�
fjnjmirij

�
; i = 1; :::;q0; j = 1; :::n;

PoissonðnjmiÞ; i =q0 + 1; :::;q; j = 1; :::; n;
(Equation 1)

where, to account for technical and biological factors that affect the variance of the transcript counts, we incorporate two random

effects:

nj
��sj; q�indGamma

�
1

q
;
1

sjq

�
; rij

��di�indGamma

�
1

di
;
1

di

�
: (Equation 2)

In this setup, Fj represents a cell-specific normalization parameter to correct for differences in mRNA content between cells and sj
models cell-specific scale differences affecting all biological and technical genes. Moreover, the random effect vj captures

unexplained technical noise that is not accounted for by the normalisation. The strength of this noise is then quantified by a global

parameter q (shared across all genes and cells). Heterogeneous gene expression across cells is captured by rij, whose strength is

controlled by gene-specific over-dispersion parameters di. These quantify the excess of variability that is observed with respect to

Poisson sampling noise, after accounting for technical noise. Finally, gene-specific parameters mi represent average expression of a

gene across cells.

When comparing two or more groups of cells (e.g. experimental conditions or cell types), the notation above can be extended by

assuming that gene-specific parameters are also group-specific (as in Vallejos et al., 2016). Comparisons of gene-specific param-

eters across populations can be used to identify statistically significant changes in gene expression at the mean and the variability
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level. However, the well known confounding effect between mean and variability that typically arises in scRNA-seq datasets (Bren-

necke et al., 2013) can preclude a meaningful interpretation of these results.

Modeling the Confounding between Mean and Dispersion
Here, we extend BASiCS to account for the confounding effect described above. For this purpose, we estimate the relationship

between mean and over-dispersion parameters by introducing the following joint prior distribution for ðmi; diÞ0:

mi � log-Normal
�
0; s2m

	
; dijmi � log-th

�
fðmiÞ; s2

�
: (Equation 3)

The latter is equivalent to the following non-linear regression model:

logðdiÞ= fðmiÞ+ ei; ei � th
�
0;s2

�
; (Equation 4)

where fðmiÞ represents the over-dispersion (on the log-scale) that is predicted by the global trend (across all genes) expressed at a

given mean expression mi. Therefore, ei can be interpreted as a latent gene-specific residual over-dispersion parameter, capturing

departures from the overall trend. If a gene exhibits a positive value for ei, this indicates more variation than expected for genes

with similar expression level. Accordingly, negative values of ei suggest less variation than expected for genes with similar expression

level.

A similar approach was introduced by DESeq2 (Love et al., 2014) in the context of bulk RNA sequencing. Whereas DESeq2

assumes normally distributed errors when estimating this trend, here we opt for a Student-t distribution as it leads to inference

that is more robust to the presence of outlier genes. Moreover, the parametric trend assumed by DESeq2 is replaced by a more

flexible semi-parametric approach. This is defined by

fðmiÞ=a0 + logðmiÞa1 +
XL
l = 1

glðlogðmiÞÞbl; (Equation 5)

where g1(,),.,gL(,) represent a set of Gaussian radial basis function (GRBF) kernels and a0;a1;b1;.;bL are regression coefficients.

As in Kapourani and Sanguinetti (2016), the GRBF kernels are defined as:

glðlogðmiÞÞ= exp

(
� 1

2

�
logðmiÞ �ml

hl

�2
)
; l = 1;.;L; (Equation 6)

where ml and hl represent location and scale hyper-parameters for GRBF kernels.

In Equation 5, the linear term captures the (typically negative) global correlation between di and mi. Its addition also stabilises infer-

ence of GRBFs around mean expression values where only a handful of genes are observed. In Equation 6, the location and scale

hyper-parameters (ml, hl) are assumed to be fixed a priori. Details about this choice are described below.

The remaining elements of the prior were chosen as follows:

bjs2 � Normal
�
mb;s

2Vb

�
; (Equation 7)
2
s � Inv-Gammaðas2 ;bs2Þ; (Equation 8)
iid

sj�Gammaðas;bsÞ; j = 1;.n; (Equation 9)
0
ðf1;.;fnÞ � n3DirichletðafÞ; (Equation 10)
q � Gammaðaq;bqÞ; (Equation 11)

with all hyper-parameters fixed a priori. Default values are chosen as:

mb = 0Lðan L-dimensional vector of zeroesÞ; (Equation 12)
Vb = IL ðan L-dimensional identity matrixÞ; (Equation 13)
as2 = 2; (Equation 14)
bs2 = 2; (Equation 15)

with the remaining default hyper-parameter values as in Vallejos et al. (2016).
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In principle, the degrees of freedomparameter h could also be estimatedwithin a Bayesian framework. However, we observed that

fixing this parameter a priori led to more stable results. A default choice for this parameter is described below.

Implementation
Posterior inference for the model described above is implemented by extending the Adaptive Metropolis within Gibbs sampler

(Roberts and Rosenthal, 2009) that was adopted by Vallejos et al. (2016). For this purpose, the log-Student-t distribution in Equation 3

is represented via the same data augmentation scheme as in Vallejos and Steel (2015). The latter introduces an auxiliary set of

parameters li such that:

dijmi;b; s
2; li;h�indlog-Normal

�
fðmiÞ;

s2

li

�
; lijh�indGamma

�h
2
;
h

2

	
(Equation 16)

Moreover, the regression coefficients b= ða0;a1; b1;.;bLÞ0 are inferred by noting that Equation 5 can be rewritten as a linear

regression model using

fðmiÞ=Xb; (Equation 17)

where X is a q03(L+2) matrix given by

X =

0
BB@

1 logðm1Þ g1ðlogðm1ÞÞ / gLðlogðm1ÞÞ
1 logðm2Þ g1ðlogðm2ÞÞ / gLðlogðm2ÞÞ
« « « 1 «
1 log

�
mq0

�
g1

�
log
�
mq0

��
/ gL

�
log
�
mq0

��
1
CCA (Equation 18)

In this setting, the full conditionals associated with sj,4j, vj and q are not affected by the new prior specification of ðmi; diÞ0 and can be

found in Vallejos et al. (2016). The full conditionals for mi, di, b, and s2 are derived below. As in Vallejos et al. (2015), these are derived

by integrating out the random effect rij in Equation 1, leading to:

Xij

��mi; di;fj; nj�ind

8>><
>>:

Neg-Bin

 
1

di
;

fjnjmi

fjnjmi +
1

di

!
; i = 1; :::;q0; j = 1; :::n;

PoissonðnjmiÞ; i =q0 + 1; :::;q; j = 1; :::; n

(Equation 19)

Based on Equation 19, the likelihood function therefore takes the form2
664Yq0

i = 1

Yn
j = 1

G

�
xij +

1

di

�
G

�
1

di

�
xij!

 
1

di

fjnjmi +
1

di

!1
di

 
fjnjmi

fjnjmi +
1

di

!xij

3
775
3

" Yq
i =q0 +1

Yn
j = 1

ðnjmiÞxij
xij!

exp

�njmi

�#
3

2
664Yn

j = 1

ðsjqÞ�
1
q

G

�
1

q

�n1q�1

j exp

�
� nj

sjq

�3775 (Equation 20)

Let fðmiÞ be as in Equation 5. The full conditionals associated to the mean expression parameters mi and over-dispersion param-

eters di are respectively given by:

pðmij,Þf
m

Pn

j = 1
xij

iQn
j = 1

�
fjnjmi +

1

di

�1
di
+ xij

exp

(
� ðlogðmiÞÞ2

2a2m
� ðlogðdiÞ � fðmiÞÞ2

2s2=li

)
1

mi

; (Equation 21)
pðdij,Þf

2
6664Y

n

j = 1

G

�
xij +

1

di

�
G

�
1

di

�
�
1

di

�1
di

�
fjnjmi +

1

di

�1
di
+ xij

3
7775exp

(
� ðlogðdiÞ � fðmiÞÞ2

2s2=li

)
1

di
: (Equation 22)
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Moreover, the full conditionals associated to the remaining parameters li, b and s2 are given by

lij,�indGamma
�
a�li ;b

�
li

	
; i = 1;.;q0; (Equation 23)
�

bj, � N m�

b;s
2V�

b

	
; (Equation 24)
2
��
s , � Inv-Gamma

�
a�s2 ;b

�
s2

�
; (Equation 25)

with

a�li =
h+ 1

2
; (Equation 26)

 �

b�
li
=
1

2

1

s2
ðlogðdiÞ � fðmiÞÞ2 + h ; (Equation 27)
� 	�1
V�
b = X0LX +V�1

b ; (Equation 28)
� 	�1� 	

m�

b = X 0LX +V�1
b X0LY +V�1

b mb ; (Equation 29)
a�
s2
=
q0 + L+ 2

2
+ as2 ; (Equation 30)
� �

b�
s2
=bs2 +

1

2
Y 0LY +m0

bV
�1
b mb + b�m�

b

	0�
V�
b

	�1�
b�m�

b

	
�
�
m�

b

	0�
V�
b

	�1

m�
b

�
; (Equation 31)
� � 	�

hbs2 +

1

2
Y 0LY +m0

bV
�1
b mb + b0 V�

b

1

b� 2b0
�
V�
b

	�1

m�
b

�
; (Equation 32)

whereL is a diagonal matrix with elements
�
l1;.; lq0

�
and Y =

�
logðd1Þ;.; log

�
dq0

� �0
. Finally, the full conditionals associated to the

global technical noise parameter (q) and cell-specific parameters (Fj, sj and vj) are defined as in Vallejos et al. (2016).

Probabilistic Rule Associated to the Differential Test
We use a probabilistic approach to identify changes in gene expression between groups of cells. Let dAi and dBi be the over-dispersion

parameters associated to gene i in groups A and B. Following Equation 4, the log2 fold change in over-dispersion between these

groups can be decomposed as:

log2

 
dAi

dBi

!
= log2ðeÞ3

2
6664fA�mA

i

�� fB
�
mB
i

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mean contribution

+ eAi � eBi|fflfflfflffl{zfflfflfflffl}
Residual change

3
7775; (Equation 33)

where the first term captures the over-dispersion change that can be attributed to differences between mA
i and mB

i . The second term in

Equation 33 represents the change in residual over-dispersion that is not confounded by mean expression. Based on this observa-

tion, statistically significant differences in residual over-dispersion will be identified for those geneswhere the tail posterior probability

of observing a large difference between eAi and eBi exceeds a certain threshold, i.e.

P
���eAi � eBi

��>j0jData
	
>aR; (Equation 34)

where j0>0 defines a pre-specified minimum tolerance threshold. As a default choice, we assume j0 = log2ð1:5Þ=log2ðeÞz0:41

which translates into a 50% increase in over-dispersion. In the limiting case when j0 = 0, the probability in Equation 34 is equal

to 1 regardless of the information contained in the data. Therefore, as in Bochkina and Richardson (2007), our decision rule is based

on the maximum of the posterior probabilities associated to the one-sided hypotheses ei
A � eBi >0 and ei

A � eBi <0, i.e.

23maxfpi;1� pig � 1>aR; with pi =P
�
eAi � eBi >0jData

�
: (Equation 35)
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In both cases, the posterior probability threshold aR is chosen to control the expected false discovery rate (EFDR) (Newton et al.,

2004). The default value for EFDR is set to 10%. As a default and to support interpretability of the results, we exclude genes that are

not expressed in at least 2 cells per condition from differential variability testing.

Changes in mean and over-dispersion are highlighted using the decision rule of Vallejos et al. (2016).

To evaluate the performance of our differential test we generated synthetic data under a null model (without changes in variability)

and an alternativemodel (with changes in variability). All datasets were generated following the BASiCSmodel, with parameter values

used set by empirical estimates based on 98microglia cells (see below). For this purpose, we use theBASiCS_Sim function. To simu-

late data under an alternative model, 1000 genes were randomly selected and their associated di’s were increased or decreased by a

log2 fold change of 5. Differential testing was performed either between data simulated on the same set of parameters (null model) or

between data simulated from the original parameters and the altered parameters (alternative model). We report the EFDR (Newton

et al., 2004) as well as the false positive rate (FPR) for simulations under the null model and the true positive rate (TPR) for simulations

under the alternative model. Synthetic data were generated with different sample sizes, with 5 repetitions for each sample size (see

Figure S1)

Choice of Hyper-Parameters
As discussed above, the degrees of freedom h, the number of GRBFs L as well as the associated hyper-parameters (ml, hl) are set a

priori. Here, we explain the default values implemented in the BASiCS software. These were chosen to achieve a compromise

between flexibility and shrinkage strength when applied to the datasets described in Table S1.

Firstly, we observed that large values of L can lead to over-fitting but that small values of L can limit the flexibility to capture

non-linear relations between logðdiÞ and logðmiÞ. Thus, as a parsimonious choice, we selected L=10. Moreover, as in Kapourani

and Sanguinetti (2016), values for ml were chosen to be equally spaced across the range of logðmiÞ, i.e.

ml = a+ ðl � 1Þb� a

L� 1
; l = 1;.; L; (Equation 36)

where a= min
i˛f1;.;q0g

flogðmiÞ g and b= max
i˛f1;.;q0g

flogðmiÞ g. As mi values are unknown a priori, a and b are updated every 50 MCMC iter-

ations during burn-in (fixed thereafter). Additionally, the scale hyper-parameters hl control the width of the GRBFs and, consequently,

the locality of the regression. As a default, we set these as hl=c3Dm, where c is a fixed proportionality constant and Dm is the dis-

tance between consecutive values of ml. In practice, we observed that the choice of a particular value of c is not critical, as long as

narrow kernels (c<0.5) are avoided. As a default, c=1.2 was chosen.

The degrees of freedom h controls the tails of the distribution for the residual term in Equation 4. This influences the shrinkage

towards the global trend and the robustness against outlying observations (here, these refer to genes whose mean and over-

dispersion values are far from the trend). If hR30, ei approximately follows a normal distribution for which posterior inference for

b is known to be sensitive to outliers. Instead, small values of h introduce heavy-tails for ei, leading tomore robust posterior inference.

In principle, h could be estimated within a Bayesian framework. However, this is problematic as the likelihood function associated to

Equation 4 can be unbounded (Fernandez and Steel, 1999). Here, we opt for a pragmatic approach where the value of h is fixed a

priori. To select a reasonable default value, we ran the regression BASiCS model for a grid of possible values of

h (h˛{1,2,3,4,5,6,7,8,9,15,20,25,30}), using the datasets described in Table S1 (with L, ml and hl fixed as described above). In all

cases, we calculated Monte Carlo estimates for the log-likelihood associated to Equation 1 as a proxy for goodness-of-fit (data

not shown). We observed that log-likelihood estimates were consistently the smallest for h= 1 and that no substantial differences

are observed across larger values of h (provided that h<<30).

Based on these observations, default values implemented in the BASiCS software are set to L=10, c=1.2, h = 5. Despite this, the

model’s implementation also allows flexible adjustment of L, c and h by the user.

Running the Different Implementations of BASiCS
In the BASiCS R library, the default setting is to run the spikes implementation of BASiCS. The no-spikes implementation can be used

by setting WithSpikes = FALSE in the call to BASiCS_MCMC. To run the regression BASiCS model, the user can set Regression =

TRUE in the call to BASiCS_MCMC and Regression = FALSE to run the non-regression BASiCS model.

The Horizontal Integration Approach
As seen in Figure 4A, BASiCS (Vallejos et al., 2015, 2016) builds upon a vertical integration framework, exploiting a set of spike-in

sequences (e.g. the set of 92 ERCCmolecules described in Jiang et al., 2011) as a gold standard to aid normalisation and to quantify

technical artifacts. However, while the addition of spike-in genes prior to sequencing is theoretically appealing (Lun et al., 2017),

several practical limitations affect their utility (Vallejos et al., 2017). For example, the addition of spike-ins is not trivial in droplet-based

protocols such as those introduced by Klein et al. (2015) and Macosko et al. (2015).

Here, we extend BASiCS to not rely on spike-in genes using principles of measurement error models where — in the absence of

gold standard features — technical variation is quantified through replication (Carroll, 1998). As scRNA-seq is a destructive technol-

ogy, it is not possible to replicate experiments by sequencing the same cells multiple times. However, we rely on the replication of

population-level characteristics of the cells through appropriate experimental design (Tung et al., 2017) by randomly allocating cells
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from the same population to multiple independent experimental replicates (hereafter these are referred to as batches). Given such an

experimental design, we assume that biological effects are shared across batches and that technical variation will be reflected by

spurious differences between cells and batches.

The Horizontal Integration Model
Following this reasoning, we use a horizontal data integration approach to leverage information from multiple batches of sequenced

cells to estimate biological effects that are not confounded by technical variation (see Figure 4B). Let Xijk be a random variable rep-

resenting the count (read- or UMI-based) for gene i ð˛f1;.;qgÞ in cell j ð˛f1;.;nkgÞ of the k-th batch ðk˛f1;.;KgÞ. The following

model is proposed:

Xijk

��mi; njk ; rijk�indPoisson
�
njkmirijk

�
; (Equation 37)
with njk
��sjk ; q�indGammað1=qk ; 1

�ðsjkqkÞÞ and rijk
��di�indGammað1=di;1=diÞ (Equation 38)

A key assumption underlying this model is that biological effects (mi and di) are shared across all batches and, therefore, we borrow

information across cells in all batches to infer these parameters. In contrast to the original implementation of BASiCS, the absence of

spike-in genes prevents the definition of two separate normalisation effects to capture nuisance differences in the scale of the

observed read-counts between cells: one to capture differences in cellular mRNA content, one to capture technical artefacts (e.g.

sequencing depth). Instead, in Equation 38, the normalisation parameters sjk capture a combination of these effects. The latter

are inferred by borrowing information across all genes assuming that EðsjkÞ= 1 a priori. Residual technical over-dispersion that is

not captured by these normalisation parameters is captured by batch-specific parameters qk.

Based on the proportion of variability that is attributed to a biological component, ourmodel can be used to identify highly and lowly

variable genes within a population of cells (see Vallejos et al., 2015). Moreover, differences in mean and over-dispersion between cell

populations can be highlighted by comparing gene-specific parameters (mi, di). Finally, when adopting the prior specification

described for the regression BASiCS model, our model can also be used to compare transcriptional heterogeneity in terms of a

residual over-dispersion parameters ei.

Identifiability and Prior Specification
Themodel in Equation 37 and Equation 38 is not identifiable, i.e. the scale of cell-specific normalisation parameters sjk and gene-spe-

cific mean expression parameters mi cannot be separately estimated from the data. As a solution, the following identifiability restric-

tion is proposed:  Yq
i = 1

mi

!1=q

=m05
1

q

Xq
i =1

logðmiÞ= logðm0Þ; for a fixed known m0: (Equation 39)

In Equation 39, the geometric mean of mean expression parameters mi is fixed (when analysingmultiple populations, this restriction

independently applies within each population). In practice, we replace the value of m0 by its empirical counterpart, e.g. adopting the

normalization strategy implemented in Lun et al. (2016). To avoid ill-defined situations, this calculation must exclude genes with zero

total counts across all cells (for which the empirical estimate of mi is equal to 0). We note, however, that the actual value of m0 is not

critical, as global offset effects between cell populations can be corrected post hoc (see Vallejos et al., 2016).

Marginally, we assign a log-Normal ð0; s2mÞ prior distribution to each mi. However, we do not assume these parameters to be a priori

independent. Instead, an appropriate correlation structure is introduced to satisfy the identifiability restriction in Equation 39.

Following Theorem 8.2 in West and Harrison (1989), this correlated prior is defined as

logðmÞ= �logðm1Þ;.; log
�
mq

��0 � Nq

�
logðm0Þ1q; a

2
m

�
Iq � 1q1

0
q

.
q
		

; (Equation 40)

where q is the number of genes, 1q denotes a q-dimensional vector of ones and Iq denotes a q-dimensional identity matrix. Due to the

identifiability constraint in Equation 39, the covariance matrix in Equation 40 is not full rank. Hence, for an arbitrarily chosen reference

gene r, Equation 40 can be factorised as amultivariate normal prior for logðm�rÞ=
�
logðm1Þ;.; logðmr�1Þ; logðmr +1Þ;.; log

�
mq

� �0
and

a point mass prior for logðmrÞjlogðm�rÞ (see Proposition 2). As a result, posterior inference can be implemented by drawing posterior

samples for logðm�rÞ, leaving posterior samples for logðmrÞ to be completely specified by the identifiability restriction.

Using a Stochastic Reference Gene
The vertical integration version of BASiCS (with spike-ins) is used as a benchmark for the model in Equation 37 and Equation 38. To

illustrate its performance, we use the dataset of Gr€un et al. (2014), for which technical spike-ins and multiple batches of sequenced

cells are available. In both cases, the MCMC sampler was run for 20,000 iterations, storing draws every 10 iterations and ignoring an

initial burn-in period of 10,000 iterations (hence, results are shown in terms of 1,000 iterations).

Overall, posterior inference is unaffected for the majority of genes (Figures 4C and 4D). However, as it can be expected, the effect of

the prior is more prominent for lowly expressed genes where the data is less informative. In those cases, the identifiability constrain in
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Equation 39 slightly shrinks posterior estimates of mean expression parameters mi towards m0. We observe that posterior inference is

distorted for the arbitrarily chosen reference gene (see Figures S4A and S4B). To overcome this problem, we introduce the use of a

stochastic reference choice. The latter randomly selects a reference gene at each iteration of the MCMC algorithm. As a result, each

gene is treated as reference only a small proportion of times, leading to valid posterior inference for all genes (see Figures S4C andS4D).

Technical Details
A Correlated Prior to Satisfy the Identifiability Restriction

Proposition 1. The prior distribution

mi � log-N
�
0; a2m

	
; subject to

 Yq
i = 1

mi

!1=q

=m0ðfor fixed m0Þ (Equation 41)

is equivalent to

logðmÞ= �logðm1Þ;.; log
�
mq

��0 � Nq

�
logðm0Þ1q; a

2
m

�
Iq � 1q1

0
q

.
q
		

; (Equation 42)

where 1q denotes a q-dimensional vector of ones and Iq denotes a q-dimensional identity matrix.

Proof. The proof follows the same steps as in the proof of Theorem 8.2 in West and Harrison (1989). LetM =
Pq

i = 1logðmiÞ. It can be

shown that

�
log ðmÞ

M

�
� Nq+ 1

 
0q+ 1;

 
a2mIq a2m1q

a2m1
0
q a2m1

0
q1q

!!

hNq+ 1

 
0q+ 1;

 
a2mIq a2m1q

a2m1
0
q a2mq

!!
:

(Equation 43)

Hence

logðmÞjM � Nq

�
ðM=qÞ1q; a

2
m

�
Iq � 1q1

0
q

.
q
		

(Equation 44)

Finally, replacing M = q logðm0Þ, we obtain

logðmÞjðM=q logðm0ÞÞ � Nq

�
logðm0Þ1q; a

2
m

�
Iq � 1q1

0
q

.
q
		

(Equation 45)

Proposition 2. Let logðm�rÞhðlogðm1Þ;.; logðmr�1Þ; logðmr + 1Þ;.; logðmqÞÞ0, where r ð1%r%qÞ denotes an arbitrarily chosen refer-

ence gene. The correlated prior derived in Proposition 1 can be factorized in terms of a multivariate normal prior for logðm�rÞ and a

point mass prior for logðmrÞjlogðm�rÞ which is located at q logðm0Þ�
P

isr logðmiÞ.
Proof. Standard multivariate normal theory leads to

logðm�rÞ � Nq�1

�
logðm0Þ1q�1; a

2
m

�
Iq�1 � 1q�11

0
q�1

.
q
		

; (Equation 46)

and

logðmrÞjlogðm�rÞ � N1ðm;SÞ; (Equation 47)

with

m= logðm0Þ+
�
� 10

q�1

.
q
	�

Iq�1 � 1q�11
0
q�1

.
q
	�1

ðlogðm�rÞ � logðm0Þ1q�1Þ
= logðm0Þ � 10

q�1

�
Iq�1 + 1q�11

0
q�1

	
ðlogðm�rÞ � logðm0Þ1q�1Þ

�
q

ðsee Miller; 1981Þ
= logðm0Þ � q10

q�1ðlogðm�rÞ � logðm0Þ1q�1Þ
�
q

= logðm0Þ �
X
isr

logðmiÞ+ ðq� 1Þlogðm0Þ

=q logðm0Þ �
X
isr

logðmiÞ

; (Equation 48)

and
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Sfð1� 1=qÞ �
�
� 10

q�1

.
q
	�

Iq�1 � 1q�11
0
q�1

.
q
	�1

ð1q�1

�
qÞ

=

�
1� 1

q

�
� 1

q2
10
q�1ðIq�1 + 1q�11

0
q�1Þ1q�1ðsee Miller; 1981Þ

=

�
1� 1

q

�
� 1

q2
10
q�1ð1q�1 + ðq� 1Þ1q�1Þ

=

�
1� 1

q

�
� 1

q2
q10

q�11q�1h0

: (Equation 49)

Proposition 3. Under the same assumptions as in Proposition 1. Let m�i;r be the vector obtained after removing elements i and r

from ðm1;.;mqÞ0. It can be shown that

logðmiÞjlog
�
m�i;r

� � N

�
1

2

�
q logðm0Þ � 10

q�2 log
�
m�i;r

�	
;
1

2
a2m

�
; (Equation 50)

where 1q�2 denotes a (q�2) -dimensional vector of ones.

Proof. Standard multivariate normal theory leads to

logðmiÞjlog
�
m�i;r

� � N1ðm;SÞ; (Equation 51)

with

m= logðm0Þ+
�
� 10

q�2

.
q
	�

Iq�2 � 1q�21
0
q�2

.
q
	�1�

log
�
m�i;r

�� logðm0Þ1q�2

�
= logðm0Þ � 10

q�2

�
Iq�2 +

1

2
1q�21

0
q�2

��
log
�
m�i;r

�� logðm0Þ1q�2

��
q

ðsee Miller; 1981Þ

= logðm0Þ �
1

2

�
10
q�2 log

�
m�i;r

�� ðq� 2Þlogðm0Þ
	

=
q

2
logðm0Þ �

1

2
10
q�2 log

�
m�i;r

�

; (Equation 52)

and

S= a2m

�
ð1� 1=qÞ �

�
� 10

q�2

.
q
	�

Iq�2 � 1q�21
0
q�2

.
q
	�1

ð1q�2

�
qÞ
�

= a2m

��
1� 1

q

�
� 1

q2
10
q�2

�
Iq�2 +

1

2
1q�21

0
q�2

�
1q�2

�
ðsee Miller; 1981Þ

= a2m

��
1� 1

q

�
� 1

q2
10
q�2

�
1q�2 +

q� 2

2
1q�2

��

=
1

2
a2m

(Equation 53)

Implementation
Bayesian inference is implemented using an adaptive Metropolis within Gibbs algorithm (Roberts and Rosenthal, 2009). After inte-

grating out the random effects rijk , the full conditionals required for this implementation are based on the following likelihood function:2
664Yq

i = 1

YK
k = 1

Ynk
j =1

G

�
xijk +

1

di

�

G

 
1

di

!
xijk !

�
1

di

njkmi +
1

di

�1
di
�

njkmi

njkmi +
1

di

�xijk

3
775

3

2
664YK

k = 1

Ynk
j = 1

ðsjkqkÞ�
1
qk

G

 
1

qk

! n
1
qk
�1

jk exp

�
� njk

sjkqk

�
3
775

(Equation 54)
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Let r denote an arbitrarily chosen reference gene. If mi and di are assumed to be a priori independent (i.e. as in Vallejos et al., 2016),

the associated full conditionals for mi (isr) are given by:

p
�
mijm�i;r ; ,

�
f

m

PK

k =1

Pnk

j =1
xijk

iQK
k = 1

Qnk
j = 1ðnjkmi + 1=diÞxijk +1=di

3p
�
mijm�i;r

�
; (Equation 55)

where pðmijm�i;rÞ is defined as in Proposition 3 and m�i;r is the vector obtained after removing elements i and r from ðm1;.;mqÞ0. Due to
the identifiability constraint, mr jm�rhm

q
0ð
Q

isrmiÞ�1 with probability 1. If a gene i (isr) is excluded from the identifiability constraint

(genes with less than 1 count per cell [on average] are excluded), Equation 55 becomes

p
�
mijm�i;r ; ,

�
f

m

PK

k =1

Pnk

j =1
xijk

iQK
k = 1

Qnk
j = 1ðnjkmi + 1=diÞxijk + 1=di

3exp

(
� 1

2a2m
ðlogðmiÞÞ2

)
1

mi

: (Equation 56)

Under this prior, the remaining full conditionals are given by:

pðdij,Þf d
�ðn=diÞ
i

Gnð1=diÞ

"YK
k = 1

Ynk
j = 1

Gðxijk + 1=diÞ
ðnjkmi + 1=diÞxijk + 1=di

#
exp

�
� 1

2a2d
ðlogðdiÞÞ2

�
1

di
; (Equation 57)
pðsjk
��/ÞfðsjkÞas�ð1=qk Þ�1 exp

�
� njk

sjkqk
� sjkbs

�
; (Equation 58)
pðnjk
��,Þf n

Pq

i =1
xijk + 1=qk�1

jkQq
i = 1ðnjkmi + 1=diÞxijk +1=di

e�njk=ðqksjkÞ; (Equation 59)
pðqk j,Þf
�Qnk

j = 1ðnjk
�
sjkÞ
	1=qk

Gnk ð1=qkÞ q
aq�ðnk=qk Þ�1
k e

�ð1=qk Þ
Pnk

j = 1
ðnjk=sjkÞ�bqqk ; (Equation 60)

where n =
PK

k =1nk . Alternatively, if the joint informative prior is adopted, Equation 55 and Equation 57 are respectively replaced by

p
�
mijm�i;r ; ,

�
f

m

PK

k =1

Pnk

j =1
xijk

iYK

k = 1

Ynk

j = 1
ðnjkmi + 1=diÞxijk +1=di

3p
�
mijm�i;r

�
3

exp

(
� ðlogðmiÞÞ2

2a2m
� ðlogðdiÞ � fðmiÞÞ2

2s2
�
li

)
1

mi

; (Equation 61)
pðdij,Þf d
�ðn=diÞ
i

Gnð1=diÞ

"YK
k = 1

Ynk
j = 1

Gðxijk + 1=diÞ
ðnjkmi + 1=diÞxijk +1=di

#
3

exp

(
� ðlogðdiÞ � fðmiÞÞ2

2s2
�
li

)
1

di
;

: (Equation 62)

QUANTIFICATION AND STATISTICAL ANALYSIS

Quality Filtering of Single Cell RNA Sequencing Data
We employed a range of different datasets to test the proposedmethodology. These datasets were selected to cover different exper-

imental techniques (with andwithout uniquemolecular identifiers, UMI) and to encompass a variety of cell populations.Moreover, key

features of each dataset can be found in Table S1.
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Dictyostelium Cells
Antolovi�c et al. (2017) studied changes in expression variability between 0 hours (undifferentiated), 3 hours and 6 hours of

Dictyostelium differentiation. Raw data is available by direct download (see Data S1 in Antolovi�c et al., 2017). Across all time-points,

5 cells were removed due to low quality. Technical spike-in genes that were not detected and biological genes with an average

expression (across all cells) smaller than 1 count were removed. In total, 433 cells (131 cells and 3 batches at 0h, 157 cells and 3

batches at 3h, and 145 cells and 3 batches at 6h) and 10551 genes (88 technical and 10650 biological genes) passed filtering.

We used data from the 0h time point to test the functionality of our model.

Mouse Brain Cells
This dataset was composed of UMI scRNA-seq data of cells isolated from the mouse somatosensory cortex and hippocampal CA1

region (Zeisel et al., 2015). Raw data is available fromGene Expression Omnibus under accession code GEO: GSE60361. Prior to the

analysis, we removed technical genes with 0 total counts and biological genes for which the average count across all 3007 cells was

below 0.1. The groups comprising microglia cells and CA1 neurons were chosen to be analysed. For these groups, 98 cells

(microglia), 939 cells (CA1 pyramidal neurons) and 10744 genes (10687 biological and 57 technical genes) were left to be analysed.

Pool-and-Split RNA-Seq Data
This UMI-based dataset provides a control experiment to assess changes in biological heterogeneity in a situation where

mean expression remains unchanged across conditions. Pool-and-split samples were created by pooling 1 million mESCs

grown in 2i or serum medium and splitting 20pg of RNA into aliquots. These libraries are compared against single-cell sam-

ples (mESCs) (Gr€un et al., 2014). Raw data is available from Gene Expression Omnibus under accession code GEO:

GSE54695.

As in Gr€un et al. (2014), some cells were removed from the analysis due to low expression of the stem cell marker Oct4. Technical

genes with 0 total counts were also removed from the analysis. Additionally, lowly expressed biological genes with fewer than 0.5

counts (on average, across all samples) were excluded. This left 258 libraries (74 single mESCs grown in 2i medium, 52 single mESCs

grown in serum medium, 76 pool-and-split aliquots from cells grown in 2i medium and 56 pool-and-split aliquots from cells grown in

serum medium) as well as 8924 genes (50 technical spike-ins and 8874 biological genes) for the analysis. Each condition contained

2 batches.

Matched singlemolecule fluorescence in situ hybridization (smFISH) data frommESCs grown in 2i and serummedia were obtained

from Dominic Gr€un (Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany) through personal communications.

This smFISH experiment assayed 9 genes (Gli1, Klf4, Notch1, Pcna, Pou5f1, Sohlh2, Sox2, Stag3, Tpx2) in more than 70 cells per

condition. We excluded Notch1 from the analysis due to strong disagreement between smFISH and scRNA-seq data of cells grown

in serum medium.

CD4+ T Cells
Non-UMI scRNA-seq data of CD4+ T cells were taken fromMartinez-Jimenez et al. (2017). Raw data are available from ArrayExpress

under accession code ArrayExpress: E-MTAB-4888. To perform a variety of tests, naive and activated CD4+ T cells from youngMus

musculus (B6) micewere selected. Biological genes with an average count < 1 and non-detected technical genes were removed from

the analysis. In total, 146 cells (93 naive and 53 activated CD4+ T cells) and 10553 genes (10495 biological and 58 technical genes)

passed filtering. Each condition contains 2 replicates.

CD4+ T Cell Differentiation
Non-UMI scRNA-seq data were generated from CD4+ T cells during differentiation towards Th1 and Tfh cell fates after Plasmodium

infection (Lönnberg et al., 2017). Raw reads were downloaded from ArrayExpress [ArrayExpress: E-MTAB-4388] and mapped

against the Mus musculus genome (mm10) using gsnap (Wu and Nacu, 2010) with default settings. Read counting was performed

using HTSeq (Anders et al., 2015) with default settings.

Quality control was performed by removing cells with fewer than 300,000 biological reads or fewer than 600,000 technical reads at

day 2. At day 4 and 7, cells with fewer than 1,000,000 biological reads were excluded from downstream analysis. Additionally, we

removed genes that did not show an average detection of more than 1 read at day 2, day 3, day 4 or day 7 after infection. After

applying these criteria, 376 cells (Day 0: 16 cells, Day 2: 89, Day 3: 21, Day 4: 133, Day 7: 64, Day 7 non-infected: 53) and 7899 genes

(7847 biological and 52 technical) remained for analysis. Note that, due to low sample sizes, we focused our analysis on data fromday

2, day 4 and day 7 post-infection.

Thresholds When Assessing Expression Changes
Statistical assessment of changes in mean expression and residual over-dispersion was performed between datasets using the

regression BASiCS model. Unless otherwise indicated, the tolerance threshold was set to t0 = log2ð1:5Þ= 0:58 for differential

mean expression testing, u0 = log2ð1:5Þ= 0:58 for differential over-dispersion testing and to j0 = 0:41 for differential residual

over-dispersion testing. The expected false discovery rate was controlled to 10%. This information is also displayed in figure

legends.
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Functional Annotation Analysis
Weperformed functional annotation analysis using DAVID version 6.8 (Dennis et al., 2003). All genes considered for differential testing

were used as background. The functional annotation clustering function in DAVID was used to cluster annotation categories based

on similarity and to sort them according to their enrichment score.

Stabilization of Posterior Inference for Small Sample Sizes
To compare parameter estimates of the regression and non-regression model across different sample sizes, we used the CA1

pyramidal neuron population from Zeisel et al. (2015). The regression BASiCS model was first run on the full population of 939 cells

to generate pseudo ground truth parameter estimates. Subsequently, 50, 100, 150, 200, 250, 300 and 500 cells were randomly sub-

sampled from the full population prior to parameter estimation. This procedurewas repeated 10 times for each sample size. Based on

parameter estimates using the non-regression model, we split the genes into three sets: lowly expressed ðmi<1:89Þ, medium ex-

pressed ð1:89<mi<5:37Þ and highly expressed ðmi>5:37Þ. These cut-off values were chosen such that a third of genes classifies

into each category. We dissected the results of this experiment in three ways. First, we visualize boxplots showing all estimates

of gene-specific parameters for a single sub-sampling experiment (Figure 3). Second, we computed the log2 fold change for esti-

mates of gene-specific over-dispersion parameters di between the regression and non-regression BASiCS models (Figures S3A–

S3C). Third, for each sub-sampling experiment, sample size and gene set, we computed the median log2 fold change in mi and di
and the median difference for ei between estimates and the pseudo ground truth. The median and the range of these values across

10 sub-sampling experiment is used for visualization purposes (see Figure S3D–S3F).

External validation for posterior estimates of gene-specific model parameters was obtained using matched scRNA-seq and

smFISH data of mouse embryonic stem cells grown in 2i and serum media (see Table S1 and Gr€un et al., 2014). As in Brennecke

et al. (2013), to calculate residual CV2 values for the smFISH data, we defined residuals obtained after fitting a gamma generalized

linear model with an identity link (glmgam.fit of the statmod package in R) between the CV2 and the reciprocal log-transformed mean

transcript counts.

Changes in Variability during CD4+ T Cell Activation
Firstly, we compare the results obtained by the regression BASiCS model with respect those presented in Martinez-Jimenez et al.

(2017). To allow a direct comparison of the results, the same inclusion criteria as in Martinez-Jimenez et al. (2017) is adopted, i.e.

we excluded genes with low mean expression ðmi<50Þ in both conditions from testing. Moreover, our minimum tolerance thresholds

were also adapted tomatch the choices inMartinez-Jimenez et al. (2017). To detect differentially expressed genes (mean) aminimum

tolerance threshold t0 = 2 was used (see Figure S5A). To compare the detection of differentially over-dispersed genes, we performed

differential mean expression testing using a stringent minimum tolerance threshold t0 = 0 for both models (this is to avoid the results

being confounded by changes in mean, see upper panel in Figure S5B). For the 463 genes that are detected as non-differentially

expressed by both models for this threshold, a total of 111 genes are detected as differentially over-dispersed by either model

(minimum tolerance log2 fold change thresholdu0 = log2ð1:5Þ = 0:58). Out of this set, 93 genes (�83%) are detected as differentially

over-dispersed by both models (see lower panel in Figure S5B)).

In this article, we exclude genes whose estimated mean expression parameters mi was below 1 from the differential testing.

Furthermore, a log2 fold change threshold t0 = 1 was adopted for mean expression testing. Unlike the more stringent threshold

used by Martinez-Jimenez et al. (2017) ðt0 = 2Þ, this choice allows us to detect more subtle changes in mean expression. Moreover,

the default threshold j0 = 0:41 was used for differential variability testing. The expected false discovery rate (EFDR) was controlled

to 10%.

Geneswere sorted into four categories based on their changes in variability andmean expression: down-regulated upon activation

with (i) lower and (ii) higher variability, and up-regulated with (iii) lower and (iv) higher variability (see Figure 5A). For each of these gene

sets, functional annotation analysis was performed using all tested genes as background. The functional annotation clustering tool in

DAVID (Dennis et al., 2003) was used to cluster annotation categories based on similarity and to sort them according to their enrich-

ment score. Here, we list the top 3 functional annotation clusters per gene set and their corresponding enrichment score (ES):

d Down-regulated with lower variability: Pleckstrin homology domain (ES = 1.57), G protein signalling (ES = 1.51), glycosidase

(ES = 1.49),

d Down-regulated with higher variability: Ankyrin repeat-containing domain (ES = 2.19), GTPase mediated signalling (ES = 1.51),

steroid biosynthesis (ES = 0.89),

d Up-regulated with lower variability: RNA polymerase (ES = 1.6), RNA binding (ES = 1.53), splicing (ES = 1.41),

d Up-regulated with higher variability: Cytokine-cytokine receptor interaction (ES = 1.65), WD40 repeat (ES = 1.22), transcription

(ES = 1.18).

To visualize gene expression in individual cells, we denoised the raw expression counts using the BASiCS_DenoisedCounts

function.

Finally, we performed a synthetic experiment to illustrate how individual cells that highly express certain genes can drive the detec-

tion of changes in variability. For this purpose, we created a mixed population of cells by combining 5 activated CD4+ T cells with a

population of 93 naive CD4+ T cells. In thismixture, response genes are lowly expressed on average and show expression outliers in a
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small subset of cells. Il2 represents a gene with statistically significant higher mean expression and higher residual over-dispersion in

the mixed population (see Figure S5C). All genes that show increasedmean expression as well as increased residual over-dispersion

are visualized in Figure S5D.

Changes in Variability during CD4+ T Cell Differentiation
To detect changes in over-dispersion and residual over-dispersion (variability) during CD4+ T cell differentiation, we performed two

sets of tests between day 2 and day 4, day 4 and day 7, and day 2 and day 7. The minimum tolerance log2 fold change threshold to

test changes in mean expression in the first test was set to t0 = 0, while the threshold for the second test was set to t0 = 1. The

default threshold j0 = 0:41 was used for differential variability testing. EFDR was controlled to 10%. To visualize gene expression

in individual cells, we denoised the raw expression counts using the BASiCS_DenoisedCounts function.

The results of the first stringent test allow us to detect genes that do not change in mean expression between any of the three time

points (126 genes). For these genes, the di estimates are therefore comparable across the time points, avoiding the confounding with

mean expression (see Figure 6A). To detect genes that show different variability patterns across the time points, we first removed all

genes that are expressed in fewer than 2 cells in at least one time point. For the remaining genes, the second testing strategy was

used and all genes with statistically significant changes in variability between day 2 and day 4, and day 4 and day 7 were collected

(see Figure 6B). For analysis in Figures 6C and 6D the second testing strategywas used to detect changes in variability between day 2

and day 4.

Finally, we selected gene sets listed in Lönnberg et al. (2017) to visualize their changes in mean expression and residual over-

dispersion. The first set of genes is taken from Figure 3E of the original publication, which filtered genes based on their association

with the bifurcation of Th1 and Tfh differentiation. The second set of genes with sequential peak expression over pseudotime is taken

from Figure 5A of the original publication, whichwere selected based on immunological relevance from a list of dynamic genes during

in vivo differentiation (see Figure S6).

DATA AND SOFTWARE AVAILABILITY

BASiCS is freely available as part of Bioconductor 3.7 (bioconductor.org).

The results displayed in this manuscript and its supplemental material use BASiCS version 1.1.57. All R scripts for data preparation

and analysis are available at github.com/MarioniLab/RegressionBASiCS2017. This link also includes instructions to download all the

publicly available datasets used throughout our analyses.
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