Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Evans PD

The rapid non-genomic actions of 17β-estradiol in multiple tissues, including the nervous system, may involve the activation of the G-protein-coupled receptor, GPER. Different signalling pathways have been suggested to be activated by GPER in different cell lines and tissues. Controversially, GPER has also been suggested to be activated by the mineralocorticoid aldosterone, and by the non-steroidal diphenylacrylamide compound, STX, in some preparations. Evidence for the ability of the GPER agonist, G-1, and for aldosterone in the presence of the mineralocorticoid receptor antagonist, eplerenone, to potentiate forskolin-stimulated cyclic AMP levels in the hippocampal clonal cell line, mHippoE-18 is reviewed. The effects of both agents are blocked by the GPER antagonist G36, by PTX, (suggesting the involvement of Gi/o G proteins), by BAPTA-AM, (suggesting they are calcium sensitive), by wortmannin (suggesting an involvement of PI3Kinase) and by soluble amyloid-β peptides. STX also stimulates cyclic AMP levels in mHippoE-18 cells and these effects are blocked by G36 and PTX, as well as by amyloid-β peptides. This suggests that both aldosterone and STX may be capable of activating GPER in mHippoE-18 cells. Possible molecular mechanisms that may underlie these effects are discussed, together with possible forward directions for research on rapid non-genomic signalling by GPER, emphasising the importance of understanding the spatio-temporal aspects of its signalling in various tissues.

+view abstract Steroids, PMID: 31499073 2019

Sadiyah MF, Roychoudhuri R Immunology

Cells of the adaptive immune system, including CD4 and CD8 T cells, as well as B cells, possess the ability to undergo dynamic changes in population size, differentiation state, and function to counteract diverse and temporally stochastic threats from the external environment. To achieve this, lymphocytes must be able to rapidly control their gene-expression programs in a cell-type-specific manner and in response to extrinsic signals. Such capacity is provided by transcription factors (TFs), which bind to the available repertoire of regulatory DNA elements in distinct lymphocyte subsets to program cell-type-specific gene expression. Here we provide a set of protocols that utilize massively parallel sequencing-based approaches to map genome-wide TF-binding sites and accessible chromatin, with consideration of the unique aspects and technical issues facing their application to lymphocytes. We show how to computationally validate and analyze aligned data to map differentially enriched/accessible sites, identify enriched DNA sequence motifs, and detect the position of nucleosomes adjacent to accessible DNA elements. These techniques, when applied to immune cells, can enhance our understanding of how gene-expression programs are controlled within lymphocytes to coordinate immune function in homeostasis and disease. © 2019 by John Wiley & Sons, Inc.

+view abstract Current protocols in immunology, PMID: 31483104 2019

Bruno L, Ramlall V, Studer RA, Sauer S, Bradley D, Dharmalingam G, Carroll T, Ghoneim M, Chopin M, Nutt SL, Elderkin S, Rueda DS, Fisher AG, Siggers T, Beltrao P, Merkenschlager M

In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of RUNX transcription factor paralogs with apparent functional redundancy. Here we asked what cell-type-specific biologies might be supported by the selective expression of RUNX paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional nonequivalence between RUNX paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain and evolutionary reconstruction suggested convergence of RUNT domain residues toward submaximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.

+view abstract Nature immunology, PMID: 31451789 2019

Fraser J, Simpson J, Fontana R, Kishi-Itakura C, Ktistakis NT, Gammoh N Signalling

Despite recently uncovered connections between autophagy and the endocytic pathway, the role of autophagy in regulating endosomal function remains incompletely understood. Here, we find that the ablation of autophagy-essential players disrupts EGF-induced endocytic trafficking of EGFR. Cells lacking ATG7 or ATG16L1 exhibit increased levels of phosphatidylinositol-3-phosphate (PI(3)P), a key determinant of early endosome maturation. Increased PI(3)P levels are associated with an accumulation of EEA1-positive endosomes where EGFR trafficking is stalled. Aberrant early endosomes are recognised by the autophagy machinery in a TBK1- and Gal8-dependent manner and are delivered to LAMP2-positive lysosomes. Preventing this homeostatic regulation of early endosomes by autophagy reduces EGFR recycling to the plasma membrane and compromises downstream signalling and cell survival. Our findings uncover a novel role for the autophagy machinery in maintaining early endosome function and growth factor sensing.

+view abstract EMBO reports, PMID: 31448519 2019

Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai JS, Rank MX, Casey LW, Gu W, Ericsson DJ, Foley G, Hughes RO, Bosanac T, von Itzstein M, Rathjen JP, Nanson JD, Boden M, Dry IB, Williams SJ, Staskawicz BJ, Coleman MP, Ve T, Dodds PN, Kobe B

SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association-dependent NAD cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.

+view abstract Science (New York, N.Y.), PMID: 31439792 2019

Harman JL, Dobnikar L, Chappell J, Stokell BG, Dalby A, Foote K, Finigan A, Freire-Pritchett P, Taylor AL, Worssam MD, Madsen RR, Loche E, Uryga A, Bennett MR, Jørgensen HF

Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP, the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs.

+view abstract Arteriosclerosis, thrombosis, and vascular biology, PMID: 31434493 2019

McCormick B, Craig HE, Chu JY, Carlin LM, Canel M, Wollweber F, Toivakka M, Michael M, Astier AL, Norton L, Lilja J, Felton JM, Sasaki T, Ivaska J, Hers I, Dransfield I, Rossi AG, Vermeren S

Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 31427445 2019

Stuart HT, Stirparo GG, Lohoff T, Bates LE, Kinoshita M, Lim CY, Sousa EJ, Maskalenka K, Radzisheuskaya A, Malcolm AA, Alves MRP, Lloyd RL, Nestorowa S, Humphreys P, Mansfield W, Reik W, Bertone P, Nichols J, Göttgens B, Silva JCR Epigenetics

Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this "transition factor" underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.

+view abstract Cell stem cell, PMID: 31422912 2019

Debrand E, Chakalova L, Miles J, Dai YF, Goyenechea B, Dye S, Osborne CS, Horton A, Harju-Baker S, Pink RC, Caley D, Carter DRF, Peterson KR, Fraser P

Transcriptome analyses show a surprisingly large proportion of the mammalian genome is transcribed; much more than can be accounted for by genes and introns alone. Most of this transcription is non-coding in nature and arises from intergenic regions, often overlapping known protein-coding genes in sense or antisense orientation. The functional relevance of this widespread transcription is unknown. Here we characterize a promoter responsible for initiation of an intergenic transcript located approximately 3.3 kb and 10.7 kb upstream of the adult-specific human β-globin genes. Mutational analyses in β-YAC transgenic mice show that alteration of intergenic promoter activity results in ablation of H3K4 di- and tri-methylation and H3 hyperacetylation extending over a 30 kb region immediately downstream of the initiation site, containing the adult δ- and β-globin genes. This results in dramatically decreased expression of the adult genes through position effect variegation in which the vast majority of definitive erythroid cells harbor inactive adult globin genes. In contrast, expression of the neighboring ε- and γ-globin genes is completely normal in embryonic erythroid cells, indicating a developmentally specific variegation of the adult domain. Our results demonstrate a role for intergenic non-coding RNA transcription in the propagation of histone modifications over chromatin domains and epigenetic control of β-like globin gene transcription during development.

+view abstract PloS one, PMID: 31412036 2019

Martin-Herranz DE, Aref-Eshghi E, Bonder MJ, Stubbs TM, Choufani S, Weksberg R, Stegle O, Sadikovic B, Reik W, Thornton JM Epigenetics

Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery.

+view abstract Genome biology, PMID: 31409373 2019

Evans PD

The GPCR, GPER, mediates many of the rapid, non-genomic actions of 17β-estradiol in multiple tissues, including the nervous system. Controversially, it has also been suggested to be activated by aldosterone, and by the non-steroidal diphenylacrylamide compound, STX, in some preparations. Here, the ability of the GPER agonist, G-1, and aldosterone in the presence of the mineralocorticoid receptor antagonist, eplerenone, to potentiate forskolin-stimulated cyclic AMP levels in the hippocampal clonal cell line, mHippoE-18, are compared. Both stimulatory effects are blocked by the GPER antagonist G36, by PTX, (suggesting the involvement of Gi/o G proteins), by BAPTA-AM, (suggesting they are calcium sensitive), by wortmannin (suggesting an involvement of PI3Kinase) and by soluble amyloid-β peptides. STX also stimulates cyclic AMP levels in mHippoE-18 cells and these effects are blocked by G36 and PTX, as well as by amyloid-β peptides. This suggests that both aldosterone and STX may modulate GPER signalling in mHippoE-18 cells.

+view abstract Molecular and cellular endocrinology, PMID: 31404576 2019

Wilkinson MJ, Selman C, McLaughlin L, Horan L, Hamilton L, Gilbert C, Chadwick C, Flynn JN

Driven by the longer lifespans of humans, particularly in Westernised societies, and the need to know more about 'healthy ageing', ageing mice are being used increasingly in scientific research. Many departments and institutes involved with ageing research have developed their own systems to determine intervention points for potential refinements and to identify humane end points. Several good systems are in use, but variations between them could contribute to poor reproducibility of the science achieved. Working with scientific and regulatory communities in the UK, we have reviewed the clinical signs observed in ageing mice and developed recommendations for enhanced monitoring, behaviour assessment, husbandry and veterinary interventions. We advocate that the default time point for enhanced monitoring should be 15 months of age, unless prior information is available. Importantly, the enhanced monitoring should cause no additional harms to the animals. Where a mouse strain is well characterised, the onset of age-related enhanced monitoring may be modified based on knowledge of the onset of an expected age-related clinical sign. In progeroid models where ageing is accelerated, enhanced monitoring may need to be brought forward. Information on the background strain must be considered, as it influences the onset of age-related clinical signs. The range of ageing models currently used means that there will be no 'one-size fits all' solution. Increased awareness of the issues will lead to more refined and consistent husbandry of ageing mice, and application of humane end points will help to reduce the numbers of animals maintained for longer than is scientifically justified.

+view abstract Laboratory animals, PMID: 31403890 2019

Shi H, Strogantsev R, Takahashi N, Kazachenka A, Lorincz MC, Hemberger M, Ferguson-Smith AC

KRAB zinc finger proteins (KZFPs) represent one of the largest families of DNA-binding proteins in vertebrate genomes and appear to have evolved to silence transposable elements (TEs) including endogenous retroviruses through sequence-specific targeting of repressive chromatin states. ZFP57 is required to maintain the post-fertilization DNA methylation memory of parental origin at genomic imprints. Here we conduct RNA-seq and ChIP-seq analyses in normal and ZFP57 mutant mouse ES cells to understand the relative importance of ZFP57 at imprints, unique and repetitive regions of the genome.

+view abstract Epigenetics & chromatin, PMID: 31399135 2019

Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E Epigenetics,Bioinformatics

Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients?

+view abstract Human reproduction (Oxford, England), PMID: 31398248 2019

Samant RS, Masto VB, Frydman J Signalling

Gene dosage alterations caused by aneuploidy are a common feature of most cancers yet pose severe proteotoxic challenges. Therefore, cells have evolved various dosage compensation mechanisms to limit the damage caused by the ensuing protein level imbalances. For instance, for heteromeric protein complexes, excess nonstoichiometric subunits are rapidly recognized and degraded. In this issue of , Brennan et al. (pp. 1031-1047) reveal that sequestration of nonstoichiometric subunits into aggregates is an alternative mechanism for dosage compensation in aneuploid budding yeast and human cell lines. Using a combination of proteomic and genetic techniques, they found that excess proteins undergo either degradation or aggregation but not both. Which route is preferred depends on the half-life of the protein in question. Given the multitude of diseases linked to either aneuploidy or protein aggregation, this study could serve as a springboard for future studies with broad-spanning implications.

+view abstract Genes & development, PMID: 31371460 2019

Zachari M, Gudmundsson SR, Li Z, Manifava M, Shah R, Smith M, Stronge J, Karanasios E, Piunti C, Kishi-Itakura C, Vihinen H, Jokitalo E, Guan JL, Buss F, Smith AM, Walker SA, Eskelinen EL, Ktistakis NT Signalling,Imaging

The dynamics and coordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required the earliest, followed by auto-phosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps, whereas ULK1 and ULK2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way, suggesting multiple initiation events. Targeted ubiquitinated mitochondria are cradled by endoplasmic reticulum (ER) strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands, providing platforms for formation of the mitophagosomes.

+view abstract Developmental cell, PMID: 31353311 2019

Denton AE, Carr EJ, Magiera LP, Watts AJB, Fearon DT Immunology

The induction of adaptive immunity is dependent on the structural organization of LNs, which is in turn governed by the stromal cells that underpin LN architecture. Using a novel fate-mapping mouse model, we trace the developmental origin of mesenchymal LN stromal cells (mLNSCs) to a previously undescribed embryonic fibroblast activation protein-α (FAP) progenitor. FAP cells of the LN anlagen express lymphotoxin β receptor (LTβR) and vascular cell adhesion molecule (VCAM), but not intercellular adhesion molecule (ICAM), suggesting they are early mesenchymal lymphoid tissue organizer (mLTo) cells. Clonal labeling shows that FAP progenitors locally differentiate into mLNSCs. This process is also coopted in nonlymphoid tissues in response to infection to facilitate the development of tertiary lymphoid structures, thereby mimicking the process of LN ontogeny in response to infection.

+view abstract The Journal of experimental medicine, PMID: 31324739 2019

Kazakevych J, Stoyanova E, Liebert A, Varga-Weisz P

The intestinal epithelium undergoes constant regeneration driven by intestinal stem cells. How old age affects the transcriptome in this highly dynamic tissue is an important, but poorly explored question. Using transcriptomics on sorted intestinal stem cells and adult enterocytes, we identified candidate genes, which change expression on aging. Further validation of these on intestinal epithelium of multiple middle-aged versus old-aged mice highlighted the consistent up-regulation of the expression of the gene encoding chemokine receptor Ccr2, a mediator of inflammation and several disease processes. We observed also increased expression of Strc, coding for stereocilin, and dramatically decreased expression of Rps4l, coding for a ribosome subunit. Ccr2 and Rps4l are located close to the telomeric regions of chromosome 9 and 6, respectively. As only few genes were differentially expressed and we did not observe significant protein level changes of identified ageing markers, our analysis highlights the overall robustness of murine intestinal epithelium gene expression to old age.

+view abstract Scientific reports, PMID: 31320724 2019

Imanikia S, Özbey NP, Krueger C, Casanueva O, Taylor RC Epigenetics,Bioinformatics

The unfolded protein response of the endoplasmic reticulum (UPR) is a crucial mediator of secretory pathway homeostasis. Expression of the spliced and active form of the UPR transcription factor XBP-1, XBP-1s, in the nervous system triggers activation of the UPR in the intestine of Caenorhabditis elegans (C. elegans) through release of a secreted signal, leading to increased longevity. We find that expression of XBP-1s in the neurons or intestine of the worm strikingly improves proteostasis in multiple tissues, through increased clearance of toxic proteins. To identify the mechanisms behind this enhanced proteostasis, we conducted intestine-specific RNA-seq analysis to identify genes upregulated in the intestine when XBP-1s is expressed in neurons. This revealed that neuronal XBP-1s increases the expression of genes involved in lysosome function. Lysosomes in the intestine of animals expressing neuronal XBP-1s are more acidic, and lysosomal protease activity is higher. Moreover, intestinal lysosome function is necessary for enhanced lifespan and proteostasis. These findings suggest that activation of the UPR in the intestine through neuronal signaling can increase the activity of lysosomes, leading to extended longevity and improved proteostasis across tissues.

+view abstract Current biology : CB, PMID: 31303493 2019

Ciccone DN, Namiki Y, Chen C, Morshead KB, Wood AL, Johnston CM, Morris JW, Wang Y, Sadreyev R, Corcoran AE, Matthews AGW, Oettinger MA Immunology

Antigen receptor assembly in lymphocytes involves stringently regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (~18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with > 98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP-chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.

+view abstract The Journal of biological chemistry, PMID: 31285261 2019

Morf J, Wingett SW, Farabella I, Cairns J, Furlan-Magaril M, Jiménez-García LF, Liu X, Craig FF, Walker S, Segonds-Pichon A, Andrews S, Marti-Renom MA, Fraser P Bioinformatics

The global, three-dimensional organization of RNA molecules in the nucleus is difficult to determine using existing methods. Here we introduce Proximity RNA-seq, which identifies colocalization preferences for pairs or groups of nascent and fully transcribed RNAs in the nucleus. Proximity RNA-seq is based on massive-throughput RNA barcoding of subnuclear particles in water-in-oil emulsion droplets, followed by cDNA sequencing. Our results show RNAs of varying tissue-specificity of expression, speed of RNA polymerase elongation and extent of alternative splicing positioned at varying distances from nucleoli. The simultaneous detection of multiple RNAs in proximity to each other distinguishes RNA-dense from sparse compartments. Application of Proximity RNA-seq will facilitate study of the spatial organization of transcripts in the nucleus, including non-coding RNAs, and its functional relevance.

+view abstract Nature biotechnology, PMID: 31267103 2019

Miguel-Escalada I, Bonàs-Guarch S, Cebola I, Ponsa-Cobas J, Mendieta-Esteban J, Atla G, Javierre BM, Rolando DMY, Farabella I, Morgan CC, García-Hurtado J, Beucher A, Morán I, Pasquali L, Ramos-Rodríguez M, Appel EVR, Linneberg A, Gjesing AP, Witte DR, Pedersen O, Grarup N, Ravassard P, Torrents D, Mercader JM, Piemonti L, Berney T, de Koning EJP, Kerr-Conte J, Pattou F, Fedko IO, Groop L, Prokopenko I, Hansen T, Marti-Renom MA, Fraser P, Ferrer J

Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.

+view abstract Nature genetics, PMID: 31253982 2019

Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, Tintos-Hernandez JA, Singh LN, Karch KR, Campbell SL, Doan MT, Jiang H, Nissim I, Nakamaru-Ogiso E, Wellen KE, Snyder NW, Garcia BA, Wallace DC Epigenetics

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 31253706

Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM

The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.

+view abstract Nature communications, PMID: 31243271 2019