The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
Psychological factors increase the risk to develop postinfectious IBS (PI-IBS), but the mechanisms involved are unclear. As stress affects the immune system, we investigated the potential interaction between psychological factors, the immune response against infectious gastroenteritis (IGE) and the development of IGE and PI-IBS in a large cohort exposed to contaminated drinking water.
Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.
Epigenetic reprogramming in the germline resets genomic potential and erases epigenetic memory. Three studies by Gkountela et al., Guo et al., and Tang et al. analyze the transcriptional and epigenetic landscape of human primordial germ cells, revealing a unique transcriptional network and progressive and conserved global erasure of DNA methylation.
Short-term hyperglycemia suppresses superior cervical ganglia neurotransmission. If this ganglionic dysfunction also occurs in the islet sympathetic pathway, sympathetically mediated glucagon responses could be impaired. Our objectives were 1) to test for a suppressive effect of 7 days of streptozotocin (STZ) diabetes on celiac ganglia (CG) activation and on neurotransmitter and glucagon responses to preganglionic nerve stimulation, 2) to isolate the defect in the islet sympathetic pathway to the CG itself, and 3) to test for a protective effect of the WLD(S) mutation. We injected saline or nicotine in nondiabetic and STZ-diabetic rats and measured fos mRNA levels in whole CG. We electrically stimulated the preganglionic or postganglionic nerve trunk of the CG in nondiabetic and STZ-diabetic rats and measured portal venous norepinephrine and glucagon responses. We repeated the nicotine and preganglionic nerve stimulation studies in nondiabetic and STZ-diabetic WLD(S) rats. In STZ-diabetic rats, the CG fos response to nicotine was suppressed, and the norepinephrine and glucagon responses to preganglionic nerve stimulation were impaired. In contrast, the norepinephrine and glucagon responses to postganglionic nerve stimulation were normal. The CG fos response to nicotine, and the norepinephrine and glucagon responses to preganglionic nerve stimulation, were normal in STZ-diabetic WLD(S) rats. In conclusion, short-term hyperglycemia's suppressive effect on nicotinic acetylcholine receptors of the CG impairs sympathetically mediated glucagon responses. WLD(S) rats are protected from this dysfunction. The implication is that this CG dysfunction may contribute to the impaired glucagon response to insulin-induced hypoglycemia seen early in type 1 diabetes.
Selective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence.
The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity.
Dominated by microscopy for decades the nuclear genome organization field has recently undergone a dramatic transition fuelled by new next generation sequencing technologies that are beginning to bridge the gap between microscopic observations and molecular scale studies. It is no longer in doubt that the nucleus is spatially compartmentalized and that the genome organization with respect to these compartments is cell type specific. However, it is still unclear if and how this organization contributes to genome function, or whether it is simply a consequence of it. This uncertainty is partly due to the cell-to-cell variability of genome organization, but also due to limitations of the measurement techniques and the scale of the problem at hand. Here we discuss some of the exciting recent progress made towards understanding three-dimensional genome architecture and function.
The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signalling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumour growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.
Inheritance of gene expression states is fundamental for cells to 'remember' past events, such as environmental or developmental cues. The conserved Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression of many genes in animals and plants and modifies chromatin at its targets. Histones modified by PRC2 can be inherited through cell division. However, it remains unclear whether this inheritance can direct long-term memory of individual gene expression states (cis memory) or instead if local chromatin states are dictated by the concentrations of diffusible factors (trans memory). By monitoring the expression of two copies of the Arabidopsis Polycomb target gene FLOWERING LOCUS C (FLC) in the same plants, we show that one copy can be repressed while the other is active. Furthermore, this 'mixed' expression state is inherited through many cell divisions as plants develop. These data demonstrate that epigenetic memory of FLC expression is stored not in trans but in cis.
Polypyrimidine tract binding protein (PTBP1) is a widely expressed RNA binding protein that acts as a regulator of alternative splicing and of cytoplasmic mRNA functions. Vertebrates contain two closely-related paralogs with >75% amino acid sequence identity. Early replacement of PTBP1 by PTBP2 during neuronal differentiation causes a concerted set of splicing changes. By comparison, very little is known about the molecular functions or physiological roles of PTBP3, although its expression and conservation throughout the vertebrates suggest a role in haematopoietic cells. To begin to understand its functions we have characterized the mRNA and protein isoform repertoire of PTBP3. Combinatorial alternative splicing events at the 5' end of the gene allow for the generation of eight mRNA and three major protein isoforms. Individual mRNAs generate up to three protein isoforms via alternative translation initiation by re-initiation and leaky scanning using downstream AUG codons. The N-terminally truncated PTBP3 isoforms lack nuclear localization signals and/or most of the RRM1 domain and vary in their RNA binding properties and nuclear/cytoplasmic distribution, suggesting that PTBP3 may have major post-transcriptional cytoplasmic roles. Our findings set the stage for understanding the non-redundant physiological roles of PTBP3.
Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.
A hallmark of CpG islands is their unmethylated state, and determining how DNA methylation can invade these elements is therefore important for understanding developmental gene regulation and disease. A new study shows that FBXL10, a protein commonly altered by mutation in leukemia, is part of a mechanism that blocks methylation of CpG islands.
To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8(+) T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8(+) T-cell subsets. Taken together, our results suggest that CD8(+) lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory.Cellular & Molecular Immunology advance online publication, 27 April 2015; doi:10.1038/cmi.2015.032.
Regulatory T cells (Tregs) are essential in maintaining tolerance to self. Several lines of evidence indicate that Tregs are functionally impaired in a variety of autoimmune diseases, leading to inefficient regulation of autoimmune T cells. Recent findings also suggest that Tregs are essential in controlling autoreactive B cells. The recently identified follicular regulatory T cell subset (TFR) is thought to regulate the production of autoantibodies in the germinal center (GC) response. Here we provide an update on the role of Tregs in controlling the GC response, and whether defective control over B cell tolerance contributes to autoimmunity.
Urban living in built environments, combined with the use of processed water and food, may not provide the microbial stimulation necessary for a balanced development of immune function. Many chronic inflammatory disorders, including allergic, autoimmune, metabolic, and even some behavioural disorders, are linked to alteration in the human commensal microbiota. Sedentary lifestyle is associated with reduced exposure to a broad spectrum of environmental micro-organisms and surplus energy balance, both risk factors of chronic inflammatory disorders. According to the Biodiversity Hypothesis, an environment with diverse macrobiota and microbiota modifies and enriches the human microbiota, which in turn is crucial in the development and maintenance of appropriate immune function. These issues were discussed in the symposium 'Chronic Inflammation, Lifestyle and Environment', held in Helsinki, 20-22 August 2014, under the sponsorship of the Yrjö Jahnsson Foundation. This paper briefly outlines the recent findings in the context of the environment, lifestyle, and health; discusses the forces that undermine immune tolerance in urban environments; and highlights the possibilities to restore broken immune tolerance among urban dwellers, summarizing the main messages in four statements and calling for actions to combat major public health threats.
Tumor immune escape mechanisms are being regarded as suitable targets for tumor therapy. Among these, tryptophan catabolism plays a central role in creating an immunosuppressive environment, leading to tolerance to potentially immunogenic tumor antigens. Tryptophan catabolism is initiated by either indoleamine 2,3-dioxygenase (IDO-1/-2) or tryptophan 2,3-dioxygenase 2 (TDO2), resulting in biostatic tryptophan starvation and l-kynurenine production, which participates in shaping the dynamic relationship of the host's immune system with tumor cells. Current immunotherapy strategies include blockade of IDO-1/-2 or TDO2, to restore efficient antitumor responses. Patients who might benefit from this approach are currently identified based on expression analyses of IDO-1/-2 or TDO2 in tumor tissue and/or enzymatic activity assessed by kynurenine/tryptophan ratios in the serum. We developed a monoclonal antibody targeting l-kynurenine as an in situ biomarker of IDO-1/-2 or TDO2 activity. Using Tissue Micro Array technology and immunostaining, colorectal and breast cancer patients were phenotyped based on l-kynurenine production. In colorectal cancer l-kynurenine was not unequivocally associated with IDO-1 expression, suggesting that the mere expression of tryptophan catabolic enzymes is not sufficiently informative for optimal immunotherapy.
The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise.
The function of mast cells in allergic and organ-specific autoimmune responses is highly controversial. In the current study, we aimed to dissect the role of mast cells in systemic autoimmunity in the B6(lpr/lpr) mouse, a spontaneous model of systemic lupus erythematosus. B6(lpr/lpr) mice were interbred with C57Bl/6-Kit(W-sh/W-sh) (Wsh) mice, resulting in mast cell deficiency. The offspring from this cross (Lpr/Wsh mice) developed symptoms of lupus of the same severity as B6(lpr/lpr) mice. Loss of mast cells on the Lpr background did not alter autoantibody production, proteinuria, the composition of T and B cell populations or autoimmune pathology. Reduced c-Kit expression did drive expanded splenomegaly and impeded interleukin-4 production by CD4(+) cells, suggesting minor functions for mast cells. In general, we conclude that mast cell deficiency and c-Kit deficiency do not play a role in the pathogenesis of lupus in B6(lpr/lpr) mice.
SARM1 function and nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) loss both promote axon degeneration, but their relative relationship in the process is unknown. Here, we show that NMNAT2 loss and resultant changes to NMNAT metabolites occur in injured SARM1-deficient axons despite their delayed degeneration and that axon degeneration specifically induced by NMNAT2 depletion requires SARM1. Strikingly, SARM1 deficiency also corrects axon outgrowth in mice lacking NMNAT2, independently of NMNAT metabolites, preventing perinatal lethality. Furthermore, NAMPT inhibition partially restores outgrowth of NMNAT2-deficient axons, suggesting that the NMNAT substrate, NMN, contributes to this phenotype. NMNAT2-depletion-dependent degeneration of established axons and restricted extension of developing axons are thus both SARM1 dependent, and SARM1 acts either downstream of NMNAT2 loss and NMN accumulation in a linear pathway or in a parallel branch of a convergent pathway. Understanding the pathway will help establish relationships with other modulators of axon survival and facilitate the development of effective therapies for axonopathies.
The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A-DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9.
The Hedgehog pathway is critical for animal development and has been implicated in multiple human malignancies. Despite great interest in targeting the pathway pharmacologically, many of the principles underlying the signal transduction cascade remain poorly understood. Hedgehog ligands are recognized by a unique receptor system that features the transporter-like protein Patched and the G protein-coupled receptor (GPCR)-like Smoothened (SMO). The biochemical interaction between these transmembrane proteins is the subject of intensive efforts. Recent structural and functional studies have provided great insight into the small-molecule regulation of SMO through identification of two distinct ligand-binding sites. In this Perspective, we review these recent findings and relate them to potential mechanisms for the endogenous regulation of SMO.
To identify the underlying genetic defect in a 16-year-old girl with severe early-onset and refractory systemic lupus erythematosus (SLE), IgA deficiency, and mild lower limb spasticity without neuroradiologic manifestations.