Cook Group

Cook Group
Cook Group
Simon Cook
Institute Director
Cook Group

Research Summary

One of the keys to understanding lifelong health is to understand the signalling pathways that operate inside cells and govern key fate decisions such as cell death, cell survival, cell division or cell senescence (collectively cell longevity).  These signalling pathways involve enzymes called ‘protein kinases’ that attach phosphate groups to specific cellular proteins, thereby controlling their activity, location or abundance. In this way protein kinases orchestrate the cellular response to growth factors, nutrient availability or stress and damage.

Ageing results in part from the imbalance between cellular damage, accrued throughout life, and the progressive decline in stress response and repair pathways. We are interested in how protein kinases function in stress responses, the removal of damaged cellular components (e.g. autophagy, see also Nicholas Ktistakis and Oliver Florey) and the control of cellular lifespan. We believe this will enhance our understanding of how the normal declines in these processes drive ageing.

Signalling pathways are frequently de-regulated in certain age-related diseases – notably in cancer, inflammation and neurodegeneration – and many protein kinases are attractive drug targets. Consequently we translate our basic knowledge of signalling through collaborations with charities and pharmaceutical companies (e.g. AstraZeneca and MISSION Therapeutics).

Latest Publications

Balmanno K, Kidger AM, Byrne DP, Sale MJ, Nassman N, Eyers PA, Cook SJ Signalling

Innate or acquired resistance to small molecule BRAF or MEK1/2 inhibitors (BRAFi or MEKi) typically arises through mechanisms that sustain or reinstate ERK1/2 activation. This has led to the development of a range of ERK1/2 inhibitors (ERKi) that either inhibit kinase catalytic activity (catERKi) or additionally prevent the activating pT-E-pY dual phosphorylation of ERK1/2 by MEK1/2 (dual-mechanism or dmERKi).  Here we show that eight different ERKi (both catERKi or dmERKi) drive the turnover of ERK2, the most abundant ERK isoform, with little or no effect on ERK1.  Thermal stability assays show that ERKi do not destabilise ERK2 (or ERK1) in vitro, suggesting that ERK2 turnover is a cellular consequence of ERKi binding.  ERK2 turnover is not observed upon treatment with MEKi alone, suggesting it is ERKi binding to ERK2 that drives ERK2 turnover. However, MEKi pre-treatment, which blocks ERK2 pT-E-pY phosphorylation and dissociation from MEK1/2, prevents ERK2 turnover.  ERKi treatment of cells drives the poly-ubiquitylation and proteasome-dependent turnover of ERK2 and pharmacological or genetic inhibition of Cullin-RING E3 ligases prevents this. Our results suggest that ERKi, including current clinical candidates, act as 'kinase degraders', driving the proteasome-dependent turnover of their major target, ERK2. This may be relevant to the suggestion of kinase-independent effects of ERK1/2 and the therapeutic use of ERKi.

+view abstract The Biochemical journal, PMID: 37018014

Channathodiyil P, May K, Segonds-Pichon A, Smith PD, Cook SJ, Houseley J Epigenetics , Signalling , Bioinformatics

Mutations and gene amplifications that confer drug resistance emerge frequently during chemotherapy, but their mechanism and timing are poorly understood. Here, we investigate amplification events that underlie resistance to the MEK inhibitor selumetinib (AZD6244/ARRY-142886) in COLO205 cells, a well-characterized model for reproducible emergence of drug resistance, and show that amplifications acquired are the primary cause of resistance. Selumetinib causes long-term G1 arrest accompanied by reduced expression of DNA replication and repair genes, but cells stochastically re-enter the cell cycle during treatment despite continued repression of pERK1/2. Most DNA replication and repair genes are re-expressed as cells enter S and G2; however, mRNAs encoding a subset of factors important for error-free replication and chromosome segregation, including TIPIN, PLK2 and PLK3, remain at low abundance. This suggests that DNA replication following escape from G1 arrest in drug is more error prone and provides a potential explanation for the DNA damage observed under long-term RAF-MEK-ERK1/2 pathway inhibition. To test the hypothesis that escape from G1 arrest in drug promotes amplification, we exploited the combination of palbociclib and selumetinib. Combined treatment with selumetinib and a dose of palbociclib sufficient to reinforce G1 arrest in selumetinib-sensitive cells, but not to impair proliferation of resistant cells, delays the emergence of resistant colonies, meaning that escape from G1 arrest is critical in the formation of resistant clones. Our findings demonstrate that acquisition of MEK inhibitor resistance often occurs through gene amplification and can be suppressed by impeding cell cycle entry in drug.

+view abstract NAR cancer, PMID: 36267209

Cook SJ, Lochhead PA Signalling

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAF and NRAS mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.

+view abstract Frontiers in cell and developmental biology, PMID: 35903549

bioRxiv Manuscripts

DNA REPLICATION DURING ACUTE MEK INHIBITION DRIVES ACQUISITION OF RESISTANCE THROUGH AMPLIFICATION OF THE BRAF ONCOGENE

Prasanna Channathodiyil, Anne Segonds-Pichon, Paul D. Smith, Simon J. Cook, Jonathan Houseley

bioRxiv 2021.03.23.436572

https://doi.org/10.1101/2021.03.23.436572

Group Members

Simon Cook

Institute Director

Kathryn Balmanno

Senior Research Scientist

Suzan Ber

Senior Research Scientist

Anna Clay

Visiting Student

Frazer Cook

PhD Student

Rebecca Gilley

Senior Research Associate

Eleanor Griffiths

PhD Student